

Wastewater Treatment and Zero Liquid Discharge Technologies: Overview and New Developments

Gordon Maller – URS Process Technologies, Austin, TX

Presentation To:

McIlvaine Hot Topics - Control and Treatment Technology for FGD Wastewater Thursday August 15, 2013, 10:00am CDT

Topics To Be Covered

- Overview of ELG Regulations
- FGD Wastewater Treatment
 - Properties of FGD wastewater
 - FGD WWT System Design Considerations
- Discussion of ZLD technology
- Summary and Lessons Learned

Overview of Regulations

• What are ELG's?

- National standards established by EPA to specify control levels for liquid discharges from power plants
- Approximately 1,100 power plants covered by regulations
- Implemented through National Pollutant Discharge Elimination System (NPDES) program
- History of ELG's:
 - Rules first issued in 1974 Clean Water Act
 - Revised in 1977 and 1982
 - No changes in last 30 years

Proposed New Effluent Limitation Guidelines

- New regulations expected to be implemented between 2017 and 2022 through 5-year NPDES permit cycle
- Based on BACT standards
- Standards different for existing and new sources
- Four preferred alternatives for regulation of existing discharges and one preferred alternative for new sources
- Regulations will establish new limits for mercury, arsenic, selenium, and nitrate-nitrite in FGD wastewater

ELG Limits for FGD Wastewater

	Daily Max	Monthly Average
Arsenic, total	8 ug/l	6 ug/l
Mercury, total	242 ng/l	119 ng/l
Selenium, total	16 ug/l	10 ug/l
Nitrate/Nitrite as N	0.17 mg/l	0.13 mg/l

Voluntary Incentive Program – Two Tier Program

Tier 1:

Two additional years to comply with regulations in exchange for dewatering and closing all CCR impoundments (except for leachate)

Tier 2:

Five additional years to comply in exchange for eliminating all discharges

- Requires amount of wastewater generated to be reduced and reused
- Cooling water discharges are excluded from requirement

FGD Wastewater Treatment

FGD Wastewater Background

- Wastewater a result of need to purge chlorides from scrubber
 - Corrosion of alloy materials
 - Ability of scrubber to obtain acceptable limestone utilization
- Ways that chlorides are purged from scrubber
 - Free moisture in FGD byproducts
 - Low solids purge stream
- Characteristics of FGD wastewater
 - Suspended solids
 - Major species: Ca, Mg, Na, SO3, SO4 and Cl
 - Trace species: As, B, Br, F, I, Hg, Se, Mn
 - Heavy metals
 - Nitrogen (nitrates and nitrites)
 - ORP: Can affect oxidation state of Se and Hg

FGD Wastewater Background (continued)

- Composition depends on:
 - Properties of fuel, reagent and makeup water
 - FGD process design and operation
- Wastewater from FGD can be saturated with gypsum. Can lead to scaling in WWT filtration and evaporation equipment

Design and Operation of FGD Can Affect Wastewater Properties

- Forced oxidation versus natural or inhibited oxidation
 - ORP
 - Amount of free moisture in byproducts
- High versus low chloride Can affect sulfate levels and degree of gypsum supersaturation
- Operation
 - Filtercake wash?
 - Filtercake free moisture

Design Considerations for WWT Treatment

- Concentration limits for pollutants in effluent
- Design chloride level for FGD
 - Function of inlet flue gas conditions, makeup water properties and corrosion resistance of building materials
 - Determines the volume of purge water required
 - Economic trade-offs between cost of materials and volume of purge need to be evaluated during design phase
- Purge stream should be as low in suspended solids as possible and should not be diluted
- Properties of wastewater need to be considered in design of WWT system: pH, temperature, ORP, composition, degree of supersaturation

Theoretical Scrubber Cl⁻ Blowdown Rate

Assumptions: 600 MW; Fuel HHV – 12,000 Btu / lb; Heat Rate – 10,500

Discussion of ZLD Technology

ZLD Treatment Options

- Deep well injection
- Evaporative thermal process
- In duct evaporative process
- Wastewater spray dryer
- Non-thermal process

Deep Well Injection

- Deep well injection:
 - Waste must be treated before injection
 - Lower capital and O&M costs
 - Higher environmental risk
 - Not an option in some regions

Evaporative Thermal ZLD

- Evaporative thermal process:
 - Brine concentrator for initial concentration of wastewater
 - Reverse osmosis treatment
 - Thermal evaporative (e.g., Vertical tube falling film)
 - Crystallizer
 - Removal of suspended solids and Ca⁺⁺ required prior to treatment
 - High capital and energy requirements
 - Dissolved salts present in FGD wastewater, like CaCl2, hydrolyze at high temperature and become acidic and corrosive
 - Fairly complex operating and maintenance requirements

Figure 1. Flow Diagram of a 720-MW Power Generation Facility Showing Bottlenecks in the Zero Liquid Discharge System

Block Diagram for Evaporative Thermal ZLD

Wastewater Evaporation System

- Direct injection of wastewater into ductwork
- Salts collected with fly ash in particulate control device

Wastewater Spray Dryer

- Addition of wastewater to small spray dryer installed in flue gas slipstream bypassing air heater
- Salts collected with fly ash in particulate control device

Overview of Non-Thermal ZLD Process

- Fixation and Blending for Disposal in Landfill:
 - Mixture of scrubber solids (e.g., gypsum), fly ash, lime (if required) and waste water to produce a cement-like product suitable for disposal in landfill
 - Non-thermal technology
 - No pretreatment of wastewater
 - Has potential to eliminate all discharges from plant (operate as ZLD plant)
 - Low capital and operating costs
 - Reduce quantity of ash available for resale
 - Should be preferred option due to low cost and simple O&M

Block Diagram for Non-Thermal ZLD Process

<u>Typical Composition of</u> <u>Stabilized Byproduct</u>

- 30-35% gypsum
- 30-35% fly ash
- 30-35% purge water
- 2-4% lime

Project Approach for Plant ZLD Operation

Approach for Tier 1 and Tier 2 Incentive Compliance

Approach for Tier 1 and Tier 2 Incentive Compliance

Validation and Development Testing for Non-Thermal ZLD Process

- Scrubber slurry to be evaluated:
 - Gypsum
 - Calcium sulfite inhibited and natural oxidation
 - Inhibited mag-lime
 - High chloride levels
- Fly ash to be evaluated:
 - Class C
 - Class F
 - Ash with PAC
 - Ash with brominated PAC
- Blending tests followed by:
 - Compressibility testing
 - Permeability/leachability testing (LEAF)

Parting Thoughts

- 1. Have good understanding of FGD process chemistry to improve ability to predict properties of purge water and capability of FGD system to process miscellaneous plant wastewater
- 2. Have a reasonable and accurate design basis for fuel, inlet flue gas properties, reagent and water
- 3. Operate and optimize FGD system to reduce and minimize quantity of wastewater and to produce a consistent purge stream in terms of volume and properties
- 4. Optimize plant water management to reduce volume of process streams
- 5. Consider full range of load conditions and fuel properties in design
- 6. Operate CCR Handling and transport to minimize volume of leachate and contact water

Gordon Maller – URS Process Technologies Austin, TX

gordon.maller@urs.com

