Status of Coal-to-Liquids Project Technology

McIlvaine Hot Topic Hour – Nov 4/10
Speaker: Dr. Theo L.K. Lee
VP & CTO, Headwaters CTL, LLC.

Coal Liquefaction Pathway

Direct Route (High Thermal Efficiency)

LPG, water Fuel Gas, + Syncrude

Conventional
Refining

Ultra Clean Liquid Fuels

(mixture of straight chain & ring structure)

Indirect Route (Lower Thermal Efficiency)

$$\begin{array}{c|c}
O_2 + Steam & H_2S \\
\hline
 & & NH_3
\end{array} + \begin{array}{c}
\mathbf{CO + H_2}, \\
 & (Syngas)
\end{array}$$

Gas Treatment
+ Cleaning

Synthesis
+ Refining

Liquid Fuels (mostly straight chain compounds)

Ultra Clean

DCL Liquid (better gasoline, on spec kerosene & diesel)

FT Liquid (good diesel)

Shenhua Group Study

- Shenhua Group is operating DCL and planning ICL plants in China
- 2005 Study performed by Shenhua on a Chinese coal to compare DCL and ICL
- Study conclusions

	DCL	ICL (High Temp.)	ICL (Low Temp.)
Thermal Efficiency, %	60	41	41
Liquid Product Rate, % MAF Coal	55	38	43
Water Usage, T/T Coal	7	11	12
CO ₂ Production, Kg Carbon/GJ Product	20	35	36
Investment, per MT of Liquid Product	Base	1.25xBase	1.16 x Base
Production Cost, per MT of Liquid Product	Base	1.24xBase	1.04 x Base

Direct Coal Liquefaction Process Dispersed Catalyst

• * Omitted for low-ash and/or high-reactivity coal

Feedstock Flexibility

Over 150,000 hours of pilot & demo plants operation

United States Coals	Foreign Coals
Bituminous Coals	Bituminous Coals
Illinoise No. 6	Yanzhou Beisu (China)
Kentucky No. 9, 11, & 14	Shangwan (China)
Pittsburgh	Shaanxi (China)
Ohio No. 5 & 6	Westerholt (Germany)
Utah D Seam	Steinkohle (Germany)
Coloardo	United Kingdom
New Mexico - McKinley	Taiheiyo (Japan)
Indiana V	South African
(4) a (5) (5) (4) (a (5)	Nova Scotia (Canada)
	Assam (India)
Sub-bituminous Coals	Sub-bituminous Coals
Wyodak (Wyoming)	Foeestburg (Canada)
Black Thunder (wyoming)	
Black Mesa (Wyoming)	
Lignites/Brown Coal	Lignites/Brown Coal
Texas	Australian Brown
Big Horn (Montana)	
North Dakota	

First Commercial Reference Plant

- Shenhua Group Shangwan Coal
- 20,000 BPD two-stage back-mixed reactors
- Headwaters' slurry catalyst DCL Process licensed for this site in 2002
- Headwaters provided process design package for DCL
- Axens' H-Oil®_{DC} Technology licensed in 2003
- Axens provided extended basic engineering design of DCL and integrated H-Oil-DC
- Axens provided engineering services during EPC and on-site technical services for Shenhua during startup and initial operations

Shenhua Direct Coal Liquefaction Plant at Start-Up

Refining of Coal Derived Liquid

Specific Gravity of CDL

Comparison of CDL Gasoline with Gasoline Specifications

		US RFG	Euro V	Coal Liquid	Coal Liquid
RON	min	1	95	96	92
MON	min	-	85	85	82
(R+M)/2	min	87/89/91	90	90	87
Aromatics, vol%	max	-	35	43	33
Olefins , vol%	max	-	18	< 1	<1
Benzene, vol%	max	1.0	1.0	0.5	0.5
Oxygen, wt%	max	3.5	2.7	2.7	2.7
Sulfur, ppm	max	30	10	< 1	<1
RVP, kPa	max	69	60	47	47

➤US Specification

- >Meets (or exceeds) current US gasoline specification
- ≽Euro V Gasoline

➤ At 95 RON aromatics are above specification – need to blend with low aromatics gasoline

DCL Alliance Jet Fuel Testing

Alliance DCL Jet Fuel has high density, low freeze point, and high volumetric heat of combustion while meeting all JP-8 Specs.

	DCL Diesel	Typical JP-8	JP-8 Spec.
Density (kg/m3)	0.837	0.804	775 - 840
Sulfur (ppm)	<3	383	<3000
Aromatics (w%)	1.6	18.8	<25
Freeze Point (°C)	-77	-51	<-47
Hydrogen (w%)	13.7	13.8	>13.4
Heat of Combustion (MJ/kg) - calc.	43.1	43.2	>42.8
Heat of Combustion (MJ/liter) - calc.	36.1	34.7	+3.9% vs JP-8
Smoke Point (°C)	23	22	>19

DCL Diesel Compared to Specifications

Alliance DCL Diesel meets or exceeds current US Specifications (ASTM D975)

	DCL Diesel	U.S. Spec. (No.1)	EU Spec.
Density (kg/m3)	855-885		>820, <845
Sulfur (ppm)	<5	<15	<10
Aromatics (w%)	2 - 10	<35	
Di-Aromatics (w%)	0-2	建筑	<11
Pour Point (°C)	< -48		CFPP < -15
Cetane Number	45 - 54	>40	>51

ALE North Dakota DCL Project 1/2

Feed & Power	
Lignite (37.5 % H ₂ O)	17,970 mTPD
Power Export	19.5 MW
CO ₂ Capture	3.85 MMTPY

Gasoline	7,477 BPSD
Kerosene/Jet Fuel	6,070 BPSD
Diesel Fuel	4,095 BPSD
Fuel Oil	2,935 BPSD
LPG	4,334 BPSD

ALE North Dakota DCL Project 2/2

Financial Analysis			
H ₂ Plant Feed	Lignite	Natural Gas*	
Relative Total Installed Cost	1.43xBase	Base	
Breakeven Cost (\$/bbl)	47	50	
IRR (70 debt/30 Equity)			
WTI @\$75/bbl	17.4	20.1	
WTI @\$100/bbl	24.9	29.3	

^{*} Natural gas @ \$4/MMBTU

Conclusion

- DCL results higher energy efficient and low investment cost then ICL for transportation fuel production
- ICL offers flexibility to co-produce clean power and chemicals/petrochemical feedstock
- DCL produces ultra clean, on spec transportation fuels
- The first DCL commercial plant is in operation and technical viability is no long an issue.
- Reasonable IRR for single reactor train DCL plant
- Hurdles for CTL plant in US include project financing and unclean legal rule on CO₂ emission.

