Smart Firing Control System

Corey Houn & Bernard Begley, Wisconsin Public Service
Don Labbe, Tom Kinney, Alan Morrow & Andy Speziale, Invensys Operations Management
Outline

• The challenges of firing optimization for a large coal fired boiler
• A novel approach
• Optimization results
• Conclusions
ISA Technical Papers-Search Results: 8 products found

- **Implementation and Benefits of Model Reference Feedforward (MRFF) Control** - **POWID 1989**, **Author:** D. E. Labbe
- **Automated Soot Blow and Model Based Control at MT. Storm** - **POWID 1993**, **Authors:** Donald Labbe, Larry Line
- **Optimizing Heat Rate With Model Predictive Control On Riley Turbo-Furnace Units** - **POWID 2002**, **Authors:** Donald Labbe; Darryl Roberts; Lewis Gordon
- **Field Test Results Of On-Line Coal Flow Control Technology Y** - **POWID 2005**, **Author(s):** Harun Bilirgen, Edward K. Levy, Aly Elshabasy
- **Optimizing Turbine Life Cycle Usage And Maximizing Ramp Rate** - **POWID 2006**, **Authors:** David Runkle, Don Labbe, John Lax, Robert Chapa
- **Soot Blow And Nox Optimization Enhance Once-Thru Unit Performance** - **POWID 2007**, **Authors:** Don Labbe, Don Andrasik, Andy Speziale
- **LOWERING NOX EMMISIONS AND CO2 AT OPG-THUNDER BAY** - **POWID 2010**, **Authors:** Don Labbe, Steve Carlson, Tony Gibbons, Bob Simpkins, Andy Speziale
- **SMART FIRING CONTROL SYSTEM** - **POWID 2012**, **Authors:** Corey Houn, Don Labbe, Bernie Begley, Tom Kinney, Alan Morrow and Andy Speziale
Challenges Of Large Coal Fired Boiler Burner Optimization

• When pulverized coal is fed to a utility boiler a phenomenon sometimes referred to as “roping” occurs
 – Impacts the distribution of coal flow to the coal pipes supplying the burners
 – Roping characteristics are unique mill to mill and dependent on primary air flow

• Coal maldistribution in turn causes some regions of the furnace to have more fuel and some to have less fuel
 – \(O_2\) imbalances
 – Regions of high CO and unburned carbon in oxygen depleted areas
 – High \(NO_x\) in regions of higher \(O_2\).
Typical APC Burner Optimization

- Advanced Process Control (APC) applications such as multivariable model predictive control and neural networks are frequently applied to bias furnace air flow distribution and address O_2 imbalances and regions of high CO.

- However coal pipe roping and other phenomena create a need for a recalibration of the APC models of the air register positions related to excess O_2, CO, and NO$_x$.
Furnace Air Distribution

55th Annual ISA POWID Symposium, 4-6 June 2012, Austin, Texas
Adapting APC burner optimization automatically

• The adapting system periodically tests the APC system on line without operator intervention and adapts the models to capture the characteristics of shifting relationships

• This solution has contributed to significant additional boiler efficiency improvements above and beyond the original APC application
System Deployed on Wisconsin Public Service Weston Unit 4

- Located in central Wisconsin
- 590 MW Gross coal fired once thru B&W supercritical unit commissioned in 2008
- Latest generation of high efficiency supercritical boiler and turbine
- Full complement of emissions reduction equipment
- Modern DCS with an integrated APC combustion optimization system (COS)
Wisconsin Public Service Unit 4 Emissions Control

• Features a full complement of emissions reduction equipment:
 – Dry scrubber for SO2 reduction
 – Selective catalytic reduction (SCR) using ammonia for NO\textsubscript{x} reduction
 – Bag house for particulate removal
 – Mercury removal controls
 – Modern DCS with an integrated APC combustion optimization system (COS)
 – Many auxiliary systems to address both production and emissions requirements

• DCS – over 80,000 tags and coordinates all unit controls
Original APC Combustion Optimization System

• Objective – further improve unit efficiency following extensive tuning process of this new unit by the boiler vendor, A&E and control vendor

• Results
 – delta Heat Rate Methodology indicates an average heat rate performance improvement in excess of 0.5% at all loads above minimum load
 – Weston 4 performance program indicates a full load heat rate improvement in excess of 1%
 – Additionally, a reduction in ammonia flow of ~8%
 – COS sustained these performance results, but did not reap further improvement
Adapting APC Combustion Optimization System

• Objective – Identify whether further improvements to unit efficiency were possible & if so, maintain these further improvements
 – Lower unit heat rate
 – Reduce furnace NO\textsubscript{x} emissions and reduce SCR ammonia consumption
 – Sustain benefits dynamically during both steady load and dispatching operation.

• Apply the Delta heat Rate methodology to quantify the heat rate benefits
 – Assessment included dry gas losses, FD & ID fan power, furnace NO\textsubscript{x} emissions and ammonia consumption
Adapting APC Combustion Optimization System

• Methodology
 – Utilize the existing APC COS as the base APC system
 – Provide automatic small amplitude modulation of the air registers without operator intervention
 – Automatically adapt the APC COS for tighter O\textsubscript{2} distribution and lower NO\textsub{x} and CO
Operator Graphic during Adapting System Commissioning

SFC Constraint Enabled
- Efficiency Increase
- O2 Setpoint lowers to 2.0%
- NH3 lowered
- O2 probes balanced

Manipulated Variables in service
- O2 SETPOINT BIAS - %
- NOx FLOW MASTER BIAS - %
- BURNER COLUMN BIAS - %
- MILL PRIMARY AIR FLOW BIAS - KPH
- MILL TEMP SP - DEG F

NH3 Typical
- 712 PPM
- 0 - 1000 PPM

NH3 Actual
- 612 PPM
- 0 - 1000 PPM

NH3 REDUCT
- 133 PPM
- 0 - 300 PPM

BURN STOCH

DCS LOGIC LOCATED ON PRINT FD-10A
COS PROGRAM HOSTED ON 4810AW
Adapting APC Combustion Optimization System – Results During Commissioning

- The trends illustrate the following
 - Reduction in O_2 minimum setpoint from 2.2% to 2%.
 - The transition to lower O_2 maintained average CO within constraint
 - Reduced SCR inlet NO$_x$
 - Reduced ammonia consumption
 - Increased efficiency due to lower O_2 and fan power and the equivalent ammonia savings
 - The reduction in CO followed the adjustment in COS constraints and models resulting from the operation of the system.
 - This reduction in CO allowed the operation at lower O_2.
Adapting APC Combustion Optimization System – Performance Results

- Comparison of four weeks of operational data prior to commissioning of system operation to one week following Adapting APC operation

<table>
<thead>
<tr>
<th></th>
<th>Average O_2 (%)</th>
<th>Average NO_x at SCR Inlet (% of Baseline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Case: COS running</td>
<td>2.371</td>
<td>100%</td>
</tr>
<tr>
<td>prior to Adapting System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COS following Adapting</td>
<td>2.056</td>
<td>98.4%</td>
</tr>
<tr>
<td>System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Further Improvement</td>
<td>0.316%</td>
<td>1.6%</td>
</tr>
<tr>
<td>due to Adapting System</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Adapting APC Combustion Optimization System – Benefits

• Incremental heat rate improvement of approximately 0.12% based on the Delta Heat Rate Methodology

• A reduction in ammonia flow of ~1.6% based on a comparison of performance data prior to and post system operation
Conclusions

• An automated method to adapt APC models provides an opportunity to achieve and sustain further benefits from and a combustion optimization system beyond traditional APC

• Such a system can adapt for coal roping and other phenomena that adversely influence coal distribution in large furnaces
Smart Firing Control System

Corey Houn & Bernard Begley, Wisconsin Public Service
Don Labbe, Tom Kinney, Alan Morrow & Andy Speziale, Invensys Operations Management