

Setting the Standard for Automation™

Smart Firing Control System

Corey Houn & Bernard Begley, Wisconsin Public Service Don Labbe, Tom Kinney, Alan Morrow & Andy Speziale, Invensys Operations Management

55th Annual ISA Power Industry Division Symposium 4-6 June 2012, Austin, Texas

Outline

- The challenges of firing optimization for a large coal fired boiler
- A novel approach
- Optimization results
- Conclusions

ISA POWID – Source of Technical Automation Information for the Power Industry

ISA Technical Papers-Search Results: 8 products found

- Implementation and Benefits of Model Reference Feedforward (MRFF) Control -POWID 1989, Author: D. E. Labbe
- <u>Automated Soot Blow and Model Based Control at MT. Storm POWID 1993</u>, Authors: Donald Labbe, Larry Line
- Optimizing Heat Rate With Model Predictive Control On Riley Turbo-Furnace Units -POWID 2002, Authors: Donald Labbe; Darryl Roberts; Lewis Gordon
- Field Test Results Of On-Line Coal Flow Control Technology Y POWID 2005, Author(s): Harun Bilirgen, Edward K. Levy, Aly Elshabasy
- Optimizing Turbine Life Cycle Usage And Maximizing Ramp Rate POWID 2006, Authors: David Runkle, Don Labbe, John Lax, Robert Chapa
- Soot Blow And Nox Optimization Enhance Once-Thru Unit Performance POWID
 2007, Authors: Don Labbe, Don Andrasik, Andy Speziale
- LOWERING NOX EMMISIONS AND CO2 AT OPG-THUNDER BAY POWID 2010, Authors: Don Labbe, Steve Carlson, Tony Gibbons, Bob Simpkins, Andy Speziale
- SMART FIRING CONTROL SYSTEM POWID 2012, Authors: Corey Houn, Don Labbe, Bernie Begley, Tom Kinney, Alan Morrow and Andy Speziale

Challenges Of Large Coal Fired Boiler Burner Optimization

- When pulverized coal is fed to a utility boiler a phenomenon sometimes referred to as "roping" occurs
 - Impacts the distribution of coal flow to the coal pipes supplying the burners
 - Roping characteristics are unique mill to mill and dependent on primary air flow
- Coal maldistribution in turn causes some regions of the furnace to have more fuel and some to have less fuel
 - O_2 imbalances
 - Regions of high CO and unburned carbon in oxygen depleted areas
 - High NO_x in regions of higher O_2 .

Typical APC Burner Optimization

- Advanced Process Control (APC) applications such as multivariable model predictive control and neural networks are frequently applied to bias furnace air flow distribution and address O₂ imbalances and regions of high CO
- However coal pipe roping and other phenomena create a need for a recalibration of the APC models of the air register positions related to excess O₂, CO, and NO_x

Furnace Air Distribution

SA

Adapting APC burner optimization automatically

- The adapting system periodically tests the APC system on line without operator intervention and adapts the models to capture the characteristics of shifting relationships
- This solution has contributed to significant additional boiler efficiency improvements above and beyond the original APC application

System Deployed on Wisconsin Public Service Weston Unit 4

- Located in central Wisconsin
- 590 MW Gross coal fired once thru B&W supercritical unit commissioned in 2008
- Latest generation of high efficiency supercritical boiler and turbine
- Full complement of emissions reduction equipment
- Modern DCS with an integrated APC combustion optimization system (COS)

Wisconsin Public Service Unit 4 Emissions Control

- Features a full complement of emissions reduction equipment:
 - Dry scrubber for SO2 reduction
 - Selective catalytic reduction (SCR) using ammonia for $\ensuremath{\text{NO}_{x}}$ reduction
 - Bag house for particulate removal
 - Mercury removal controls
 - Modern DCS with an integrated APC combustion optimization system (COS)
 - Many auxiliary systems to address both production and emissions requirements
- DCS over 80,000 tags and coordinates all unit controls

Original APC Combustion Optimization System

- Objective further improve unit efficiency following extensive tuning process of this new unit by the boiler vendor, A&E and control vendor
- Results
 - delta Heat Rate Methodology indicates an average heat rate performance improvement in excess of 0.5% at all loads above minimum load
 - Weston 4 performance program indicates a full load heat rate improvement in excess of 1%
 - Additionally, a reduction in ammonia flow of ~8%
 - COS sustained these performance results, but did not reap further improvement

Adapting APC Combustion Optimization System

- Objective Identify whether further improvements to unit efficiency were possible & if so, maintain these further improvements
 - Lower unit heat rate
 - Reduce furnace NO_x emissions and reduce SCR ammonia consumption
 - Sustain benefits dynamically during both steady load and dispatching operation.
- Apply the Delta heat Rate methodology to quantify the heat rate benefits
 - Assessment included dry gas losses, FD & ID fan power, furnace NO_x emissions and ammonia consumption

Adapting APC Combustion Optimization System

- Methodology
 - Utilize the existing APC COS as the base APC system
 - Provide automatic small amplitude modulation of the air registers without operator intervention
 - Automatically adapt the APC COS for tighter $\rm O_2$ distribution and lower $\rm NO_x$ and CO

Operator Graphic during Adapting System Commissioning

Adapting APC Combustion Optimization System – Results During Commissioning

- The trends illustrate the following
 - Reduction in O_2 minimum setpoint from 2.2% to 2%.
 - The transition to lower O₂ maintained average CO within constraint
 - Reduced SCR inlet NO_x
 - Reduced ammonia consumption
 - Increased efficiency due to lower O₂ and fan power and the equivalent ammonia savings
 - The reduction in CO followed the adjustment in COS constraints and models resulting from the operation of the system.
 - This reduction in CO allowed the operation at lower O_2 .

Adapting APC Combustion Optimization System – Performance Results

 Comparison of four weeks of operational data prior to commissioning of system operation to one week following Adapting APC operation

	Average O ₂ (%)	Average NO _x at SCR Inlet (% of Baseline)
Base Case: COS running prior to Adapting System	2.371	100%
COS following Adapting System	2.056	98.4%
Further Improvement due to Adapting System	0.316%	1.6%

Adapting APC Combustion Optimization System – Benefits

- Incremental heat rate improvement of approximately 0.12% based on the Delta Heat Rate Methodology
- A reduction in ammonia flow of ~1.6% based on a comparison of performance data prior to and post system operation

Conclusions

- An automated method to adapt APC models provides an opportunity to achieve and sustain further
- benefits from and a combustion optimization system beyond traditional APC
- Such a system can adapt for coal roping and other phenomena that adversely influence coal distribution in large furnaces

Setting the Standard for Automation™

Smart Firing Control System

Corey Houn & Bernard Begley, Wisconsin Public Service Don Labbe, Tom Kinney, Alan Morrow & Andy Speziale, Invensys Operations Management

55th Annual ISA Power Industry Division Symposium 4-6 June 2012, Austin, Texas