

"We are passionate about innovation and technology leadership"

Status of B&W Carbon Capture Programs and Technology

Denny McDonald, Technical Fellow, Babcock & Wilcox

Steve Moorman

Mgr Business Development – Advanced Technologies, Babcock & Wilcox May 24, 2012

Presentation Outline

- 1. Current Climate for fossil fuels (NG prices, UMACT, CO₂ rule) and CCS
- 2. FutureGen 2.0 Update
- 3. State of B&W CCS programs
 - a) Oxycombustion
 - b) Post Combustion
 - c) Chemical Looping

"So, if somebody wants to build a coal plant, they can it's just that it will bankrupt them."- Barack Obama 2008

Power Generation Group

UMACT and CO₂ Rules

The State of CCS Worldwide

Current CCS Projects Worldwide

Largescale Power Plant CCS Projects Worldwide							
USA							
Project Name	Leader	Feedstock	Size MW	Capture Process	CO2 Fate	Start-up	Location
TCEP	Summit Power	Coal	400	Pre	EOR	2014	Texas
<u>Trailblazer</u>	Tenaska	Coal	600	Post	EOR	2014	Texas
Kemper County	Southern	Coal	582	Pre	EOR	2014	Mississippi
HECA	SCS	Petcoke	390	Pre	EOR	2014	California
FutureGen 2.0	FutureGen Alliance	Coal	200	Оху	Saline	2015	Illinois
WA Parish	NRG Energy	Coal	60	Post	EOR	2017	Texas
Sweeny Gasification	ConocoPhillips	Coal	680	Pre	Saline/ EOR	Cancelled	Texas
AEP Mountaineer	AEP	Coal	235	Post	Saline	Cancelled	West Virginia
<u>Taylorville</u>	Tenaska	Coal	602	Pre	Saline	Cancelled	Illinois
Antelope Valley	Basin Electric	Coal	120	Post	EOR	Cancelled	North Dakota
Canada							
Boundary Dam	SaskPower	Coal	110	Post	EOR	2014	Saskatchewan
Project Pioneer	TransAlta	Coal	450	Post	Saline/ EOR	2015	Alberta
Bow City	BCPL	Coal	1000	Post	EOR	2017	Alberta
Belle Plaine	TransCanada	Petcoke	500	Pre	Undecided	Undecided	Saskatchewan

Abbreviations used:

Oxy = Oxyfuel Combustion Capture Pre = Pre Combustion Capture Post = Post Co mbustion Capture EOR = Enhanced Oil Recovery EGR = Enhanced Gas Recovery Saline = Saline Formation Depleted Gas = Depleted Gas Reservoir Depleted Oil = Depleted Oil Reservoir TBD = To Be Decided

Date modified April 3, 2012

Source: Carbon Capture & Sequestration Technologies @ MIT

Current CCS Projects Worldwide

Largescale Power Plant CCS Projects Worldwide							
European Union							
Project Name	Leader	Feedstock	Size MW	Capture Process	CO2 Fate	Start-up	Location
<u>Longannet</u>	Scottish Power	Coal	300	Post	Saline	Cancelled	UK
Belchatow	PGE	Coal	250-858	Post	Saline	2015	Poland
Ferrybridge	SSE	Coal	500	Post	Depleted Oil	2015	UK
ROAD	E.ON	Coal	250	Post	Saline	2015	Netherlands
<u>Compostilla</u>	ENDESA	Coal	323	Оху	Saline	2015	Spain
Don Valley Power Project	2Co	Coal	650	Pre	EOR	2015	UK
<u>Magnum</u>	Nuon	Various	1200	Pre	EOR/ EGR	2020	Netherlands
<u>Getica</u>	Turceni Energy	Coal	330	Post	Saline	2015	Germany
Porto Tolle	ENEL	Coal	660	Post	Saline	On hold	Italy
<u>Goldenbergwerk</u>	RWE	Coal	450	Pre	Saline	On hold	Germany
<u>Janschwalde</u>	Vattenfall	Coal	250	Оху	Saline	Cancelled	Germany
Norway							
<u>Mongstad</u>	Statoil	Gas	350	Post	Saline	2012	Norway
Kårstø	Naturkraft	Gas	420	Post	Saline	Delayed	Norway
Rest of the World							
Daqing	Alstom & Datang	Coal	350 &1000	Оху	EOR	2015	China
Taiyuan	B&W and SIEG	Coal	350	Оху	undecided		
GreenGen	GreenGen	Coal	250/400	Pre	Saline	2018	China

Source: Carbon Capture & Sequestration Technologies @ MIT Taiyuan added

FutureGen 2.0 History

Meredosia Plant

- Awarded \$1 billion AARA funding in September 2010
- Illinois Coal (3.2% sulfur)
- Replace oil-fired unit built in 1975 with oxy-process

Initial Project Structure

- Capture Ameren Energy Resources (AER), teamed with B&W and Air Liquide
- Transport & Storage FutureGen Alliance

FutureGen 2.0 Project Schedule & Status

Phase I	Phase II	Phase III	Phase IV
Pre-FEED (Front End Engineering Design)	FEED	EPC and Startup	Test Period
October 2010 thru June 2012	July 2012 thru December 2013	January 2014 to June 2017	July 2017 to March 2020 (monitoring continues until March 2022)

Status

- Phase I is completed and we await approval to begin Phase II.
- Construction air permit submitted to Illinois EPA.
- Midwest Independent System Operator (MISO) interconnection requested.
- The Environmental Impact Statement (EIS) is progressing well
- A draft Power Purchase Agreement (PPA) is pending with the Illinois Power Agency and the Commerce Commission.
- Negotiations to transfer Meredosia unit and the DOE Cooperative from Ameren to the FGIA are underway.

FutureGen 2.0 CO₂ Transport & Storage Plan

FGIA selected Morgan County for storage site

4500 ft Deep Saline Formation (DSF) in Morgan County (≈32 miles pipeline from the plant)

<u>Reservoir</u> Potential CO₂ Storage Resource (billion metric tons) Mt. Simon Sandstone - 27 to 109

State

Potential CO₂ Storage Resource (billion metric tons) Illinois 20 to 79 Indiana 7.9 to 32 Kentucky 1.5 to 6.3 *Total* 29 to 117 billion metric tons

FutureGen 2.0 CO₂ Transport & Storage Plan

- 4,812 ft. deep characterization well completed
- Data indicates site is suitable for storage
- Primary subsurface storage rights secured
- Mattoon property sold
- Liability management legislation in place
- Pipeline routing nearing completion

FutureGen 2.0 Phase 1 Redesign

Key Design Basis Changes Implemented:

 Unit designed for summer rated load of 168 MWe gross (instead of nameplate 203 MWe).
Design coal was changed froo 100% Illinois (high S and Cl) to 60% Illinois, 40% PRB blend.

Continuing Requirements:

1. Minimum 90% CO_2 Capture (will actually be > 98%). 2. At least 1 MMT/yr of CO_2 stored (at 85% CF).

FutureGen 2.0 Revised Process Schematic

FutureGen 2.0 Air Emissions

Project Air Emissions				
Emissions	lb/hr (lb/MBtu),			
Constituent	HHV Basis			
СО	4.8 (0.0031)			
NO _x	35.4 (0.023)			
VOM	5.7 (0.0036)			
PM (Total)	Negligible			
SO ₂	0.02 (0.000013)			
SO ₃	Negligible			
HCI	Negligible			
HF	Negligible			
Hg	Negligible			
CO2 Recove	ery, Production, and Quality			
CO ₂ Recovery (mass basis)	98%			
	319 klbs/hr, 3,828 tpd			
Mass flow (CO ₂)	1.08 million metric tons/year (based on			
	85% capacity factor)			
Pressure	2,100 psig			
Temperature	71°F			
CO ₂ content	99.8% (by mass, dry basis)			

Deployment

RSAT™ Post Combustion CO₂ Capture Technology

- Regenerable Solvent Absorption Technology (RSAT[™])
- Up to 90% CO₂ capture
- Advanced solvent-based scrubber
- Applications: new or retrofit; coal, oil, natural gas
- Ready for field demonstration

Reference Plant Design 1500 TPD (75 MW)

B&W PGG Post-Combustion CO₂ Capture

Simplified Chemical Looping Flow Diagram

B&W's Chemical-Looping Program

Advantages of the chemical-looping processes

- 1. Chemical-looping processes are fuel flexible. They can be modified to produce hydrogen, liquid fuels and generate electricity as part of the process.
- 2. Eliminates the need for an air separation unit for oxygen production
- 3. Produces a pure CO2 stream with no additional separation costs.
- 4. Higher energy efficiencies are possible since chemical-looping processes are not limited by the Carnot cycle.
- 5. When integrated in coal-to-liquid processes, chemical-looping can increase liquid fuel yields while reducing CO2 emissions.

B&W and OSU are jointly developing two chemical-looping technologies:

- 1. Syngas-chemical looping for the production of hydrogen or liquid fuels from coal-derived syngas
- 2. Coal-direct chemical-looping for the production of hydrogen, liquid fuels and power

Conclusions

- While the UMACT and the proposed GHG rules have effectively prohibited new coal and brought certainty to the need for CCS fossil fuel plants, the low price of natural gas will dictate any new capacity additions in the near term.
- Unless gas prices exceed \$10 dollars/MBtu it is unlikely that coal with CCS will be able to compete.
- CCS technologies continue to be developed albeit at a slow pace. Public funding is still required as the cost to develop these technologies remains high but dollar amounts are limited with the poor economic conditions.
- Even though demonstration projects for first generation technologies are yet to be completed the reality that these technologies will be very expensive to deploy is settling in.
- Second generation CCS technologies offer promise of lowering cost, they are years away from being proven at reasonable scale and the cost will still be significant.
- Public acceptance for permanent storage of large volumes of CO2 is still a question.

