New Technology for Monitoring Cycle Chemistry

THORNTON Leading Pure Water Analytics

David M. Gray McIlvaine Hot Topic Hour February 21, 2013

Outline

Sensor developments

- Measurement parameters
 - Conductivity
 - pH/ORP
 - Dissolved oxygen
 - Sodium / Silica
- Multiparameter instrumentation
- Conclusion

Performance and maintenance are improved significantly with signal handling and intelligence contained within the sensor

Outline

Sensor developments

Measurement parameters

- Conductivity
- pH/ORP
- Dissolved oxygen
- Sodium / Silica
- Multiparameter instrumentation
- Conclusion

Conductivity Sensor Reliability

- Sensor reliability can depend on cell constant
- Many instruments require very low constant sensors with close spacing and large surface area for pure water measurements.
- Corrosion products, deionization resin particles or bubbles can accumulate between electrodes, causing large errors.
- Systems using higher constant 0.1 cm⁻¹ sensors such as intelligent digital sensors, provide wider electrode spacing that prevents accumulation of particles, resulting in less cleaning, greater reliability and longer sensor life.

0.01 cm⁻¹ constant

0.1 cm⁻¹ constant

Conductivity Measurement Accuracy

- Accuracy depends on
 - Measuring circuit calibration
 - Cell constant calibration
 - Temperature calibration
 - Installation variables—cable length, etc.
- Conventional sensor and transmitter
 - Calibrate sensor with one transmitter/cable; measure with another transmitter/cable
 - Errors of transmitter, cable and sensor can be cumulative
- Integrated digital sensor
 - Calibrate and measure with the same internal circuit
 - Reduced error

With digital, intelligent sensors, accuracy is unaffected by cable length or the particular transmitter used for calibration

Digital Conductivity Sensor Accuracy

Digital sensors deliver significantly better system accuracy

- Analog conductivity systems calibrate the sensor element and measuring circuit in the transmitter separately, with contributions to error from both, e.g.
 - Sensor cell constant accuracy: ± 1%
 - Transmitter accuracy: ± 0.5%
 - System accuracy, ± 1.5%, plus cable effects
- Digital conductivity system accuracy
 - No error contributed by transmitter
 - No error contributed by cable or noise pickup
 - System accuracy = cell constant accuracy = ± 1%, a 33% improvement in accuracy
 - Factory calibration accuracy = installed accuracy

Intelligent digital conductivity sensors can reduce errors by at least 1/3 compared with conventional analog sensors

Rangeability and Accuracy

- Titanium 0.1 cm⁻¹ constant sensors—pure water to 50,000 µS/cm
 - 0.02 to 5,000 $\mu S/cm,$ ± 1% installed accuracy
 - 5,000 to 50,000 $\mu S/cm,$ ± 3% installed accuracy
 - Orders of magnitude wider range than other sensors

Intelligent digital sensors provide significantly higher accuracy and wider rangeability than conventional conductivity sensors.

- Sensor with widely spaced electrodes / relatively high cell constant, to prevent fouling
- Low volume sensor flow housing for high flow velocity
- Accurately calibrated cell constant and temperature
- Integral measuring circuit and digital signal conversion
- Proven temperature compensation algorithms
 - Ammonia/amine compensation for specific conductivity
 - Cation compensation for cation and degassed cation conductivity
 - High purity compensation for deionized makeup water

Electrode System Schematic

Intelligent High Purity pH Sensor

Intelligent Liquid Electrolyte High Purity pH Sensor

Predictive Diagnostics for pH

Predictive Diagnostics

Predictive diagnostics provide guidance on when and what is required to maintain the sensor

Intelligent Dissolved Oxygen Sensor

- Time to maintenance—membrane/electrolyte change
- Dynamic lifetime indication—electrode change

Intelligent Sodium Analyzer

Intelligent Silica Analyzer

Overflow chamber Calibration standard & grab sample bottle Level / flow switch Temperature sensor Sample flow indicator & control valve **Reaction chamber** 0 Integrated measuring circuit, memory & digital conversion

Outline

- Sensor developments
- Measurement parameters
 - Conductivity
 - pH/ORP
 - Dissolved oxygen
 - Sodium / Silica

Multiparameter instrumentation

Conclusion

Multiparameter Intelligent Instrumentation

- Common platform for many parameters
- Automatic recognition and interchangeability of sensors
- Reduced panel space requirements
- Reduced spare parts requirements
- Internal calculation of derived parameters
- Predictive maintenance

Makeup water treatment

- RO % salt rejection product and feed conductivity
- RO % flow recovery product and reject flowrate
- Deionization capacity ∫ flow x TDS dt
- Cycle chemistry
 - Calculated pH specific & cation/acid conductivity
 - Calculated CO₂ cation & degassed cation conductivity

- All parameters for a sample can be displayed on one screen
 - Specific conductivity
 - Cation conductivity
 - Calculated pH
 - Electrode pH
 - ORP (redox potential)
 - Dissolved oxygen
 - Sample temperature

Outline

- Sensor developments
- Measurement parameters
 - Conductivity
 - pH/ORP
 - Dissolved oxygen
 - Sodium / Silica
- Multiparameter instrumentation

Conclusion

Intelligent Sensor Summary

- Digital Intelligent Sensors
 - Measuring circuit
 - Digital signal conversion
 - Extensive memory
 - Predictive diagnostics
- Conductivity
 - Improved accuracy
 - Much wider rangeability
- pH
 - Improved signal reliability
 - Predictive diagnostics
- Dissolved oxygen
 - Improved signal reliability
 - Predictive diagnostics
- Enables full benefit of multiparameter instrumentation

