

AMC POWER

Coal Flow Measurement

MBF Mill Improvement

- Decreasing PA improves coal balance
- Optimum coal velocity for better combustion

Coal Pipe Layout

Coal Mass and Coal Speed

Absolute Coal Flow

AMC POWER

Adjustable Diffusing Coal Valves

Coal Pipe Balancing

Coal Pipe Balancing

Pf-Vu - Pulverized Coal Flow Viewing System - C:\PF-VU

<u>File</u> Deb<u>ug</u> <u>Special</u> Mill Mill 1A3 West History Trend - Mass Flow Air Monitor Pf-FLO 05/06/10 May 05 2010 May 05 May 05 May 05 2010 May 05 Scale Max 10:45:09 11:00:39 11:16:09 11:31:39 11:47:10 100 % 4,000 1A3-3 [a.u.] 2,365 2,087 3,500 1A3-4 2,828 2,293 3,000 2,500 2,000 1,500 Scale Min 1,000 % 0 Reset Scale 500 Select Mill 0 Mill 1A1 West Mill 1A1 East 10:45:09 Image: A second s Mill 1A2 West 11:47:10 Mill 1A2 East < | × Mill 1A3 West Mill 1A3 East Reset Scooters 10:45:09 Zoom In 1h 2m 1s Zoom Out ◄ -Update Data Mill 1A4 West Dynamic 1 hour 30 minutes 10 minutes Minutes **~** -**FH** Mill 1A4 East 4 hours Mill 1A5 West Date/Time Mill 1A5 East Help Save To File Main Menu Select Screen **Quick View** Dynamic

_ 7 🗙

Coal Pipe Balancing

Prevent Burner/Pipe Fires

Prevent Burner/Pipe Fires

Pulverizer Overview

• Automatic PA "kicker" for lowest pipe velocity limit

Burner Airflow – IBAM

Burner Airflow Measurement • Wind Tunnel Testing at Air Monitor HQ

Equation 2: Inner Vane Position - 15° Open, Outer Vane Position - 55° Open Coefficient = $0.0000335938 \times x^4 - 0.0013321146 \times x^3 + 0.0179408814 \times x^2$ -0.0886535541 *x + 0.8467944546 Equation 3: Inner Vane Position - 15° Open, Outer Vane Position - 60° Open

-0.1504645772 *x + 0.9413919352

Coefficient = $0.0000718750^{*}x^{4} - 0.0025442917^{*}x^{3} + 0.0314481881^{*}x^{2}$

F/A Screens in Control Room

Crystal River Unit 4CCM success

- B&W Opposed Fire Pulverized Coal 770 MW
 - 6 MPS-89 Puvlerizers
 - 9 Coal Outlets per Mill
 - 54 B&W DRB-4Z Low NOx Burners
- 6 Compartmentalized Windboxes
 - 3 x Front, 3 X Rear
- SCR, Cold Side ESP & Wet FGD

Continuous Combustion Management (CCM)

- Equipment Additions:
 - Coal Flow Measurement & control valves
 - Burner Secondary Air Flow Measurement & auto purge
 - Burner Secondary Air Flow Adjustment
 - Primary Air Measurement and Auto Purge
 - CO measurement
- Equipment Modifications
 - Relocation of O2 Probes
 - New O2 equipment (probes and cabinets)

CRN O2 Distribution Comparisons

CR4 O2 Profiles

		l					
0 - 25 %							I
0 - 25 %							
0 - 25 %							
0 - 25 %							
0 - 25 %							
0 - 25 %							
0 - 25 %							
0 - 25 %							
0 - 25 %	2.1						

CR5 O2 Profiles

Note: Unit scales are different

CO Measurement gives confidence in O2 reduction

CO and O2 in close proximity

New O2 Curve

LOI benefit

Project Results

- Boiler Efficiency Increase = 0.5%
 - Annual fuel savings
- Combustion NOx Reduction
 - 7% at full load, 15-25% at part load
 - Annual Ammonia Reagent Usage Reduction
 - SCR Catalyst Life Extension
- Fan Auxiliary Power Savings
- Reduced LOI
- Reduced potential for slagging and fouling events
- Improved Pressure part life due to improved temperature profile