Mitigation of SCR Impacts on Fuel Flexibility Using Targeted In Furnace Injection (TIFI)

David Capozella
Volker Rummenhohlh, Fuel Tech, Inc.

McIlvaine Hot Topic
February 23, 2012
Agenda

• Impact of catalyst technology on fuel flexibility
• Overview of Targeted In Furnace Injection TIFI®
• Demonstrated Benefits of TIFI® on boiler and SCR operation
• Conclusions
Impact of SCR on Boiler Operation and Fuel Flexibility

- Minimum Operating Temperature MOT
 - Determined by ABS formation temperature (to protect catalyst from masking)
 - MOT may impose restrictions on unit minimum load, NOx removal efficiency (NH₃ injection rate) and fuel quality (Sulfur content)

- Downstream impacts of Ammonia Slip and SO₃
 - Fouling (delta-P), Corrosion, Byproduct Quality ($), Visible Emissions (Environmental)

- Catalyst poisons
 - Fuel flexibility and Catalyst life ($)
Minimum Operating Temperature

- The MOT of the catalyst depends on the SO\textsubscript{3} and ammonia concentration in the flue gas
- The ammonia concentration is a function of the NO\textsubscript{x} removal
Impact of SO_3 on NO$_x$ Reduction

- MOT impact at 200 PPM NO$_x$ Reduction
TIFI® Targeted In-Furnace Injection™

- Highly reactive magnesium hydroxide \(\text{Mg(OH)}_2 \)
- Patented process using Computational Fluid Dynamic Modeling
- Critical Design Criteria
 - Furnace gas flows and temperatures
 - Chemical distribution, particle size and feed rate
CFD Modeling of Injection Strategy includes both Furnace and Backend

TIFI Injection Model

SO₃ Distribution Map
ANATOMY OF A TYPICAL INJECTION SYSTEM

Tank

BOOST/RECIRC

CHEMICAL METERING

AIR

WATER

MANIFOLDS

INJECTORS

TIFI® Targeted In-Furnace Injection™
TIFI reduces ABS, SO$_3$, and H$_2$SO$_4$

- Lower Furnace Temperature
 - Decreased SO$_2$ Oxidation Rate
- More Balanced Furnace
 - Reduced Excess Oxygen
- Reduced Slag and Iron Deposits
 - Less Catalytic Oxidation of SO$_2$
- Direct Reaction with MgO
 - MgO + SO$_3$ \rightarrow MgSO$_4$
 - MgO + NH$_4$HSO$_4$ \rightarrow MgSO$_4$ + NH$_3$ + H$_2$O
Case Studies

Demonstration of TIFI with SCR
Control of Hard Slag Formation

Fuel Characteristics – SO2 3.3-4.5 #mmBtu; Iron Content (in ash) 23-25%

- Treated slag material is more friable
- More easily and thoroughly removed with existing soot blowing
- Mitigates formation of Large Particle Ash/Popcorn Ash
- Reduces build up of catalytic metals in the furnace
- Generous improvement of boiler efficiency
Control of LPA/SCR Pressure Drop

NET MW vs. SCR DP

- Baseline
- TIFI Treatment

Graph Details
- X-axis: DATE
- Y-axis: NET MW
- Axes: DP (in. H2O)
- Lines:
 - Net MW
 - SCR "A" DP
 - SCR "B" DP
SO$_3$ Mitigation with TIFI

- **Economizer Outlet**: Baseline 50, Treated 50 lbs/Ton
- **SCR Outlet**: Baseline 200, Treated 200 lbs/Ton
- **Air Heater Outlet**: Baseline 10, Treated 10 lbs/Ton
TIFI Clean up Of Air Heater

- TIFI virtually eliminates precipitation of ABS in the AH
Online ABS Removal from Air Heater

AH pressure drop decreased from 17.8” to 14.7”
- Ammonia Slip ranged from 3-15 ppm
- SCR dP and Air Heater dP controlled for 19 months
Arsenic Poisoning Mitigation

Gaseous Arsenic is a predominant deactivation mechanism for SCR catalyst in coal fired applications (source E-ON 2010)

Low concentration of alkaline metals in the fuel can exacerbate deactivation by Arsenic.
 • TIFI provides alkaline metal (Mg) to mitigate

Higher flue gas temperatures can exacerbate deactivation by Arsenic.
 • TIFI improves furnace heat recovery and allows lower MOT

Higher concentrations of SO_3 can exacerbate deactivation by Arsenic.
 • TIFI effectively reduces SO_3
Conclusions

• TIFI® Targeted In-Furnace Injection™ Successfully controlled slag, fouling, SO$_3$, & ABS
• Prevented ABS Formation, and removed ABS from a Fouled Air Heater
• Catalyst Life Significantly Extended by maintaining low SCR & AH dP
• Ammonia slip is managed - preventing need to buy new catalyst prematurely
• TIFI mitigates several contributors to catalyst deactivation by gaseous Arsenic
NOx Reduction Technology Suite

- **Advanced Combustion Technologies**
 - Combustion Modifications: LNB, ULNB, FGR and OFA Systems

- **Selective Non-Catalytic Reduction**
 - RRI (Rich Reagent Injection)
 - NOxOUT® SNCR
 - HERT (High Energy Reagent Technology)

- **Catalyst Technologies**
 - Urea-based and NH3-based* SCR for Industrial Applications
 - NOxOUT CASCADE®: SNCR + SCR Hybrids
 - Advanced SCR Systems
 - NOxOUT ULTRA®: Thermal Decomposition of Urea
 - SCR Design and Application Consulting, Catalyst Mgmt Services

*Note: Recent development for small NH₃ flow SCRs under 10,000 pounds of reagent storage.
Fuel Tech’s Global Presence

Office Locations: Warrenville, IL; Stamford, CT; Durham, NC; Milan, Italy; Beijing, China

Countries where Fuel Tech does business: USA, Belgium, Canada, China, Columbia, Czech Republic, Denmark, Dominican Republic, Ecuador, France, Germany, India, Italy, Jamaica, Mexico, Poland, Portugal, Puerto Rico, Romania, South Korea, Spain, Taiwan, Turkey, United Kingdom, Venezuela