

Mitigation of SCR Impacts on Fuel Flexibility Using Targeted In Furnace Injection (TIFI)

David Capozella Volker Rummenhohl, Fuel Tech, Inc.

> McIlvaine Hot Topic February 23, 2012

Agenda

- Impact of catalyst technology on fuel flexibility
- Overview of Targeted In Furnace Injection TIFI[®]
- Demonstrated Benefits of TIFI[®] on boiler and SCR operation
- Conclusions

Impact of SCR on Boiler Operation and Fuel Flexibility

- Minimum Operating Temperature MOT
 - Determined by ABS formation temperature (to protect catalyst from masking)
 - MOT may impose restrictions on unit minimum load, NOx removal efficiency (NH₃ injection rate) and fuel quality (Sulfur content)
- Downstream impacts of Ammonia Slip and SO₃
 - Fouling (delta-P), Corrosion, Byproduct Quality (\$),
 Visible Emissions (Environmental)
- Catalyst poisons
 - Fuel flexibility and Catalyst life (\$)

Minimum Operating Temperature

- The MOT of the catalyst depends on the SO_3 and ammonia concentration in the flue gas
- The ammonia concentration is a function of the NO_x removal

Impact of SO₃ on NO_x Reduction

MOT impact at 200 PPM NO_x Reduction

TIFI[®] Targeted In-Furnace Injection[™]

- Highly reactive magnesium hydroxide Mg(OH)₂
- Patented process using Computational Fluid Dynamic Modeling
- Critical Design Criteria
 - Furnace gas flows and temperatures
 Chemical distribution, particle size and feed rate

CFD Modeling of Injection Strategy includes both Furnace and Backend

TIFI Injection Model

SO₃ Distribution Map

TIFI[®] Targeted In-Furnace Injection[™]

ANATOMY OF A TYPICAL INJECTION SYSTEM

TIFI reduces ABS, SO_3 and H_2SO_4

- Lower Furnace Temperature
 Decreased SO₂ Oxidation Rate
- More Balanced Furnace
 - ▲ Reduced Excess Oxygen
- Reduced Slag and Iron Deposits
 - ▲ Less Catalytic Oxidation of SO₂
- Direct Reaction with MgO
 - $MgO + SO_3 => MgSO_4$
 - $AMgO + NH_4HSO_4 => MgSO_4 + NH_3 + H_2O$

Case Studies

Demonstration of TIFI with SCR

Control of Hard Slag Formation

Fuel Characteristics – SO2 3.3-4.5 #mmBtu; Iron Content (in ash) 23-25%

Treated slag material is more friable

- More easily and thoroughly removed with existing soot blowing
- Mitigates formation of Large Particle Ash/Popcorn Ash
- Reduces build up of catalytic metals in the furnace
- Generous improvement of boiler efficiency

Control of LPA/SCR Pressure Drop

NET MW vs. SCR DP

---- Net MW ---- SCR "A" DP ---- SCR "B" DP

FUEL TECH

SO₃ Mitigation with TIFI

TIFI Clean up Of Air Heater

TIFI virtually eliminates precipitation of ABS in the AH

Online ABS Removal from Air Heater

> AH pressure drop decreased from 17.8" to 14.7"

Catalyst Operating Life Extension

Ammonia Slip ranged from 3-15 ppm SCR dP and Air Heater dP controlled for 19 months

Arsenic Poisoning Mitigation

Gaseous Arsenic is a predominant deactivation mechanism for SCR catalyst in coal fired applications (source E-ON 2010)

Low concentration of alkaline metals in the fuel can exacerbate deactivation by Arsenic.

• TIFI provides alkaline metal (Mg) to mitigate

Higher flue gas temperatures can exacerbate deactivation by Arsenic.

• TIFI improves furnace heat recovery and allows lower MOT

Higher concentrations of SO₃ can exacerbate deactivation by Arsenic.

• TIFI effectively reduces SO₃

Conclusions

- TIFI[®] Targeted In-Furnace Injection[™] Successfully controlled slag, fouling, SO₃, & ABS
- Prevented ABS Formation, and <u>removed</u> ABS from a Fouled Air Heater
- Catalyst Life Significantly Extended by maintaining low SCR & AH dP
- Ammonia slip is managed preventing need to buy new catalyst prematurely
- TIFI mitigates several contributors to catalyst deactivation by gaseous Arsenic

Fuel Tech Inc (FTEK)

NOx Reduction Technology Suite

- Advanced Combustion Technologies
 - Combustion Modifications: LNB, ULNB, FGR and OFA Systems
- Selective Non-Catalytic Reduction
 - RRI (Rich Reagent Injection)
 - NOXOUT[®] SNCR
 - HERT (High Energy Reagent Technology)
- Catalyst Technologies
 - Urea-based and NH3-based* SCR for Industrial Applications
 - NOXOUT CASCADE[®]: SNCR + SCR Hybrids
 - Advanced SCR Systems
 - NOxOUT ULTRA[®]: Thermal Decomposition of Urea
 - SCR Design and Application Consulting, Catalyst Mgmt Services

*Note: Recent development for small NH_3 flow SCRs under 10,000 pounds of reagent storage.

Fuel Tech's Global Presence

Office Locations: Warrenville, IL; Stamford, CT; Durham, NC; Milan, Italy; Beijing, China
 Countries where Fuel Tech does business: USA, Belgium, Canada, China, Columbia, Czech Republic, Denmark, Dominican Republic, Ecuador, France, Germany, India, Italy, Jamaica, Mexico, Poland, Portugal, Puerto Rico, Romania, South Korea, Spain, Taiwan, Turkey, United Kingdom, Venezuela

