

: HCI CEM: "Best Practices" and Technology Overview Name: Dan Kietzer – SICK Process Automation

Contents

- : Experience
- : Best Practices
- : PS18 Brief Overview
- : Technology Overview
 - NDIR Gas Filter Correlation
 - Tunable Diode Laser Spectroscopy TDLS
 - Fourier Transform IR FTIR
 - Cavity Ringdown
- : Discussion / Questions

Experience

- : There is over 30 Years experience in measuring HCI in CEM applications
 - Cement
 - Power
 - Waste Incineration
 - Pharmaceutical
- : Typical spans are in the 0 5/10ppm range

Best Practice

- : Fast and correct measurement of HCI in ppm concentrations can only be made when you measure wet.
 - This prevents errors due to absorption, desorption effects from HCI on the wetted parts.
- : Keep the entire sample train hot/insulated to prevent cold spots
 - System components should be kept at a minimum of 185° C to prevent cold spots
 - Swagelok fitting on inlet/outlet pump
 - Sample pump
 - Flange and tube at the sample probe
 - Ends of sample line extending from heated line (insulated)
 - Vent tube from photometer (avoid salt formation)
 - Sample probe tube (if flue gas below acid dewpoint)
- : Sample at high temperature and high flow rate.
 - Shortens the time the sample is in contact with the system components, minimizing memory effects.

Best Practices - Calibration

- : HCI is not CO. Calibration gas injection is the most troublesome part of HCI monitoring.
 - Cylinder values can be effected by dirty pressure regulators, improper handling of the regulators or incompatible materials used in the sample system
 - Cylinders < 100ppm need to be tested for long term stability
 - HCI/N2 mixtures down to 1 ppm show stability in passivated Luxfer aluminum cylinders
 - HCI/N2 mixtures down to 25 ppm show stability in nickel plated steel cylinders.
 - Dry calibration gas injection at the probe leads to issues with absorption/desorption
 - Measurement stability time of the system can be very long (>35-40 min at <10ppm); if the measurement range is low, this uses a lot of expensive cal gas
 - This issue is not specific to any measurement technology (NDIR, TDLS, FTIR)
 - Options
 - Automated wet calibrator can be integrated into the system.
 - NIST Tracable, easy to use
 - Humidification of dry gas increases response time.

PS18 – Brief Overview

- : Will be inclusive of all technologies; extractive, dilution, in-situ
- : Will include provisions for:
 - Linearity
 - Interference Tests
 - Limit of Detection (LOD)
 - Response Time
 - Cal Error
 - RATA and/or Dynamic Spiking
 - Reference methods may include EPA Method 320/321, ASTM D-6348-12.
 - EPA Method 26A may also be used, but not for Portland Cement kilns
 - One of the major parameters to be addressed is the definition of standards (dry cylinders, wet gas generators)
 - Both will likely be allowed

NDIR Monitoring Technique

- : Multi-component
- : Undiluted Hot Wet Extractive
- Utilizes Gas Filter Correlation Technique for HCI
- Simple and reliable sample system
- Long path cell for low ranges
- > 3000 installations worldwide

NDIR Monitoring Technique

HW Sample System

NDIR Monitoring Technique

Relevant Measuring Ranges

HCI	0	-	10	ppm
NH_3	0	-	15	ppm
SO ₂	0	-	25	ppm
CO	0	-	40	ppm
NO	0	-	80	ppm
CO_2	0	-	25	Vol%
H_2O	0	-	40	Vol%
O ₂	0	-	21	Vol%
NO_2	0	-	50	ppm
N_2O	0	-	50	ppm
CH_4	0	-	70	ppm

Smallest ranges @ standard conditions dry (H₂O, O₂: wet)

- : Tunable Diode Laser Spectrocopy uses a laser light scanning over a specific absorption wavelength area of desired measurement component.
- : Laser selectivity means high sensitivity and minimal cross-interference effects
- : "Line locking" technique eliminates measurement drift
- Inline gas cell can be used for daily validation
- : Available in in-situ and extractive configurations
 - In-situ: Cross stack and probe
 - Extractive: Hot wet

TDLS Cross Stack Versions – Min Range: 0-10ppm

Cross stack version

- Daily validation via gas cell
- : Spiking difficult

: A complete TDLS system in one housing

: Minimum Range: 0-5 ppm HCI

: Extractive "hot-wet" measurement

: Heated, volume- and flow- optimized multi-pass gas cell, 290ml

GME700

: 19"-rack for control cabinet installation

FTIR Monitoring Technique

- : Fourier Transform IR Technique utilizes a moving mirror in an interferometer to generate a "interferogram" of the sample absorption spectrum.
- Performing a mathematical Fourier transform on the "interferogram" generates an absorption spectrum of the entire used spectral range.
- FTIR can generate multi-component measurement results, including HCI.
- : Hot wet sample system
- : Typical minimum range of HCI: 0-10ppm

Cavity Ringdown

- : Cavity ringdown measures by attuning light rays from a laser in the IR spectrum where the component to be measured is absorbed.
- : Measuring the time it takes for the light to fade, or "ringdown" gives an accurate molecule count.
- Dilution extractive measurement technique
- : Range: 0-5ppm (+/- 1 ppb)

Summary

- : There are many, well known and used measurement techniques for monitoring of HCI
- : Minimum range and detection limits meet current requirements
- : NDIR and FTIR offer multi-component options
- : TDLS and Cavity Ringdown offers single component option
- Sample handling is key
 - Keep Sample Hot
 - Move Sample fast
- : Calibration is the difficult part
 - Accuracy and handling of dry gas cylinders
 - Absorption/Desorption for dry gases
 - Wet Calibration

Dan Kietzer SICK Process Automation Phone: 763-205-5664 Email: dan.kietzer@sick.com

: Thank you for your attention.

