

Discovering what's possible with calcium[™]

Meeting Regulatory Needs with Hydrated Lime

Curt Biehn

June 22, 2012

Regulatory Reasons for Acid Gas Mitigation

- Pre-MACT
 - Offset additional SO₃ generated from SCR installation
 - Control blue plume at stack from Wet FGD addition
 - Appearance
 - ≻Local concerns
- Future
 - Consent decree on acidic gases
 Specified amount at the stack
 - Limitations of Method 8A
 - Particulate
 - >0.030 lb/MM Btu (filterable)
 - -HCI as acid gas surrogate
 - ≥0.002 lb/mmBTU
 - ➢Protection of PAC for Hg control
 - Consistency and OST of mitigation system will be critical

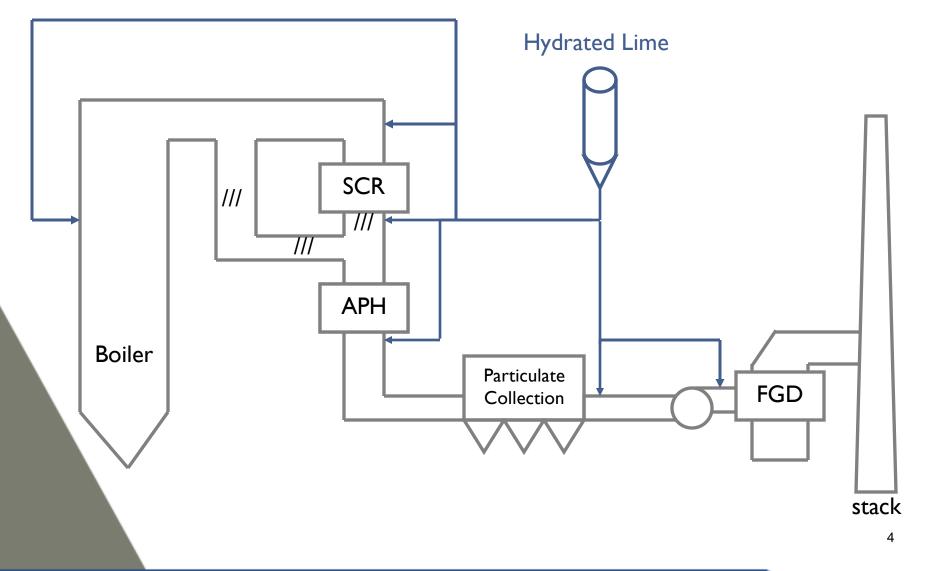
Questions to Answer

- Are you buying tons or moles of sorbent? Forecast annual usage in <u>tons</u> for comparison of sorbents
- Where are you and where do you have to get with pollutants?
 - Potential side benefits of acid gas mitigation
 - Hydrated lime effective for SO_3 and HCl at a wide temperature range
- What will your injection system look like?
 - Expectations on Operations and Maintenance
 - Hydrated lime systems <u>with good design principles</u> are in place and working well in the industry

Implications of sorbent choice

- Supply

Solid, multi-location supply base


Logistics

Availability via truck or rail; low working capital and short lead time

-Ash

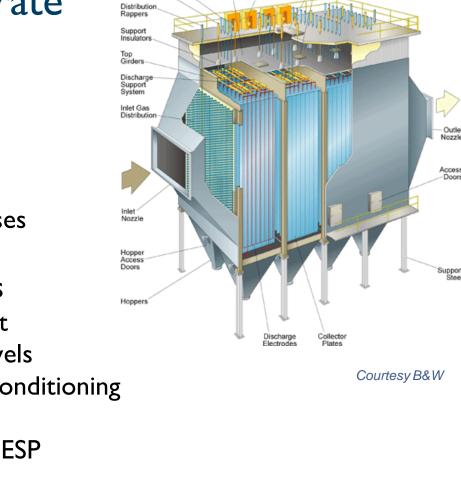
No leaching issues

Injection Location Options for Hydrated Lime

Acid Gas Emission Control – Baghouse Shawnee

DSI Program targeting HCI emissions to meet 2015 MATS

- Baghouse seasoning is essential for test program (yellow vs green)
- HCI limits easily met with low hydrate requirements
 - Lower limit of feeder capability for consistency
- Results of follow-up study also optimistic


Hydrate Injection Rate	HCI (Ib/MMBTU)	HF (lb/MMBTU)	H ₂ SO ₄ (ppmvd)
0 lb/hr - Baseline	0.0030	0.0045	1.3
600 lb/hr (in flight)	0.0016	0.0046	0.46
I,000 lb/hr (in flight)	0.0016	0.0043	0.42
350 lb/hr	0.0005	0.0006	0.37
350 lb/hr	0.0007	0.0007	0.35
300 lb/hr	0.0008	0.0006	0.35

SO₃ Control with Hydrate ESPs

- SO₃ conditions ESP
- Ash resistivity
 - Sodium reduces; Calcium increases
- Strategy for Unit-specific issues
 - Distribution of particulate in duct
 - Balance hydrate feed and SO₃ levels
 - Important to maintain ESP conditioning
 - >~3ppm SO₃
 - Short Residence time in front of ESP
 - Manage with split injection

Lodge Cottrell presentation from 2011 APC conference

Reinholdenvironmental.com library section

Root

Pressure

Casing

th Voltag

System

Access

Doors

Collecto

Rappers

Discharo

Rapper

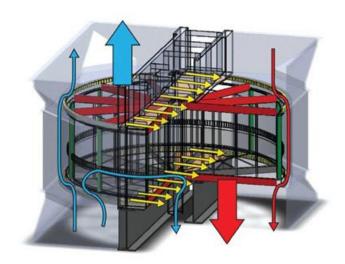
Typical SO₃ Removal Rates - ESP systems

- Residence time effects
 - -Short (<2 sec) will require more sorbent
- Injection system efficiencies
 - Flue gas coverage
 - Feed system

Plant	lb hydrate: lb SO ₃	Treated Stack
550 MW	3.9 : 1	<1.5 ppm
1300 MW	3.9 : 1	3 ppm
700 MW	3.5 : 1	3.5 ppm
>500 MW	1.9 : 1	<6 ppm
	3.8 : 1	<2 ppm
>500 MW	2.5 : 1	4 ppm
	3.9 : 1	<2 ppm

Removal Rate Examples Using Hydrated Lime

Hydrate Prior to Air Preheater


Hot side injection offers additional benefits:

- Better utilization of sorbent
 - Longer reaction time
- APH operation
 - Eliminate ABS buildup from ammonia slip
 - -Flexibility on SCR operation
- Lower heat rate
 - Reduce acid dew point through APH

Neutralization of SO_3 by hydrate will occur at pre-APH temperatures

- Sodium sorbents:
 - Byproducts and intermediates can form without temperature and concentration control
- Calcium sorbents
 - -No issues with reaction byproducts or intermediates
 - Multiple trials of Pre-APH since '09
 - -Utility Pre-APH since 2010
 - ➢No issues reported

Courtesy BreenES

Pre-SCR Injection with Hydrated Lime for SO₃

- Potential benefits
 - Residence time
 - Mixing/sorbent utilization
- Initial program
 - -Unit <250MW
 - Bituminous coal
 - Injected over several days
- Observations

- -No operational issues during this limited test period
- Noticeable reduction in hydrate required to achieve low SO₃
 levels measured at APH outlet (vs injection at SCR outlet)
- Additional testing planned

Summary

Hydrated lime DSI is effective for acid gas mitigation

- Meeting HCI MATS Requirments
- ESP applications
- Pre-APH
 - Additional benefits of early SO₃ removal
- Interesting results with Pre-SCR injection

Contact Information

Curt Biehn

Manager, Marketing & Technical Services crbiehn@mississippilime.com (314)543-6309

Mississippi Lime Company 3870 S. Lindbergh Blvd. Suite 200 St. Louis, MO 63127 www.mississippilime.com

Discovering what's possible with calcium™