Meeting Regulatory Needs with Hydrated Lime

Curt Biehn

June 22, 2012
Regulatory Reasons for Acid Gas Mitigation

• Pre-MACT
 – Offset additional SO$_3$ generated from SCR installation
 – Control blue plume at stack from Wet FGD addition
 ➢ Appearance
 ➢ Local concerns

• Future
 – Consent decree on acidic gases
 ➢ Specified amount at the stack
 • Limitations of Method 8A
 – Particulate
 ➢ 0.030 lb/MM Btu (filterable)
 – HCl as acid gas surrogate
 ➢ 0.002 lb/mmBTU
 ➢ Protection of PAC for Hg control
 – Consistency and OST of mitigation system will be critical
Questions to Answer

• Are you buying tons or moles of sorbent?
 Forecast annual usage in tons for comparison of sorbents

• Where are you and where do you have to get with pollutants?
 – Potential side benefits of acid gas mitigation
 Hydrated lime effective for \(SO_3 \) and \(HCl \) at a wide temperature range

• What will your injection system look like?
 – Expectations on Operations and Maintenance
 Hydrated lime systems with good design principles are in place and working well in the industry

• Implications of sorbent choice
 – Supply
 Solid, multi-location supply base
 – Logistics
 Availability via truck or rail; low working capital and short lead time
 – Ash
 No leaching issues
Injection Location Options for Hydrated Lime
Acid Gas Emission Control – Baghouse Shawnee

DSI Program targeting HCl emissions to meet 2015 MATS

- Baghouse seasoning is essential for test program (yellow vs green)
- HCl limits easily met with low hydrate requirements
 - Lower limit of feeder capability for consistency
- Results of follow-up study also optimistic

<table>
<thead>
<tr>
<th>Hydrate Injection Rate</th>
<th>HCl (lb/MMBTU)</th>
<th>HF (lb/MMBTU)</th>
<th>H$_2$SO$_4$ (ppmvd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 lb/hr - Baseline</td>
<td>0.0030</td>
<td>0.0045</td>
<td>1.3</td>
</tr>
<tr>
<td>600 lb/hr (in flight)</td>
<td>0.0016</td>
<td>0.0046</td>
<td>0.46</td>
</tr>
<tr>
<td>1,000 lb/hr (in flight)</td>
<td>0.0016</td>
<td>0.0043</td>
<td>0.42</td>
</tr>
<tr>
<td>350 lb/hr</td>
<td>0.0005</td>
<td>0.0006</td>
<td>0.37</td>
</tr>
<tr>
<td>350 lb/hr</td>
<td>0.0007</td>
<td>0.0007</td>
<td>0.35</td>
</tr>
<tr>
<td>300 lb/hr</td>
<td>0.0008</td>
<td>0.0006</td>
<td>0.35</td>
</tr>
</tbody>
</table>
SO₃ Control with Hydrate ESPs

• SO₃ conditions ESP

• Ash resistivity
 – Sodium reduces; Calcium increases

• Strategy for Unit-specific issues
 – Distribution of particulate in duct
 – Balance hydrate feed and SO₃ levels
 ➜ Important to maintain ESP conditioning
 ➜ ~3ppm SO₃
 – Short Residence time in front of ESP
 ➜ Manage with split injection

Lodge Cottrell presentation from 2011 APC conference
 – Reinholdenvironmental.com library section

Courtesy B&W Lodge Cottrell presentation from 2011 APC conference– Reinholdenvironmental.com library section
Typical SO_3 Removal Rates - ESP systems

- Residence time effects
 - Short (<2 sec) will require more sorbent
- Injection system efficiencies
 - Flue gas coverage
 - Feed system

Removal Rate Examples Using Hydrated Lime

<table>
<thead>
<tr>
<th>Plant</th>
<th>$\text{lb hydrate: lb } SO_3$</th>
<th>Treated Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>550 MW</td>
<td>3.9 : 1</td>
<td><1.5 ppm</td>
</tr>
<tr>
<td>1300 MW</td>
<td>3.9 : 1</td>
<td>3 ppm</td>
</tr>
<tr>
<td>700 MW</td>
<td>3.5 : 1</td>
<td>3.5 ppm</td>
</tr>
<tr>
<td>>500 MW</td>
<td>1.9 : 1 3.8 : 1</td>
<td><6 ppm <2 ppm</td>
</tr>
<tr>
<td>>500 MW</td>
<td>2.5 : 1 3.9 : 1</td>
<td>4 ppm <2 ppm</td>
</tr>
</tbody>
</table>
Hydrate Prior to Air Preheater

Hot side injection offers additional benefits:

- Better utilization of sorbent
 - Longer reaction time
- APH operation
 - Eliminate ABS buildup from ammonia slip
 - Flexibility on SCR operation
- Lower heat rate
 - Reduce acid dew point through APH

Neutralization of SO_3 by hydrate will occur at pre-APH temperatures

- Sodium sorbents:
 - Byproducts and intermediates can form without temperature and concentration control
- Calcium sorbents
 - No issues with reaction byproducts or intermediates
 - Multiple trials of Pre-APH since ’09
 - Utility – Pre-APH since 2010
 - No issues reported
Pre-SCR Injection with Hydrated Lime for SO_3

- **Potential benefits**
 - Residence time
 - Mixing/sorbent utilization

- **Initial program**
 - Unit <250MW
 - Bituminous coal
 - Injected over several days

- **Observations**
 - No operational issues during this limited test period
 - Noticeable reduction in hydrate required to achieve low SO_3 levels measured at APH outlet (vs injection at SCR outlet)

- **Additional testing planned**
Summary

Hydrated lime DSI is effective for acid gas mitigation

• Meeting HCl MATS Requirements
• ESP applications
• Pre-APH
 – Additional benefits of early SO_3 removal
• Interesting results with Pre-SCR injection
Contact Information

Curt Biehn
Manager, Marketing & Technical Services
crbiehn@mississippilime.com
(314)543-6309

Mississippi Lime Company
3870 S. Lindbergh Blvd.
Suite 200
St. Louis, MO 63127
www.mississippilime.com