Real Time Continuous Monitoring of SO₃ and SO₂ Across Flue Gas Ducts

> Curtis Laush, Ph.D., IMACC Round Rock, TX claush@imacc-instruments.com

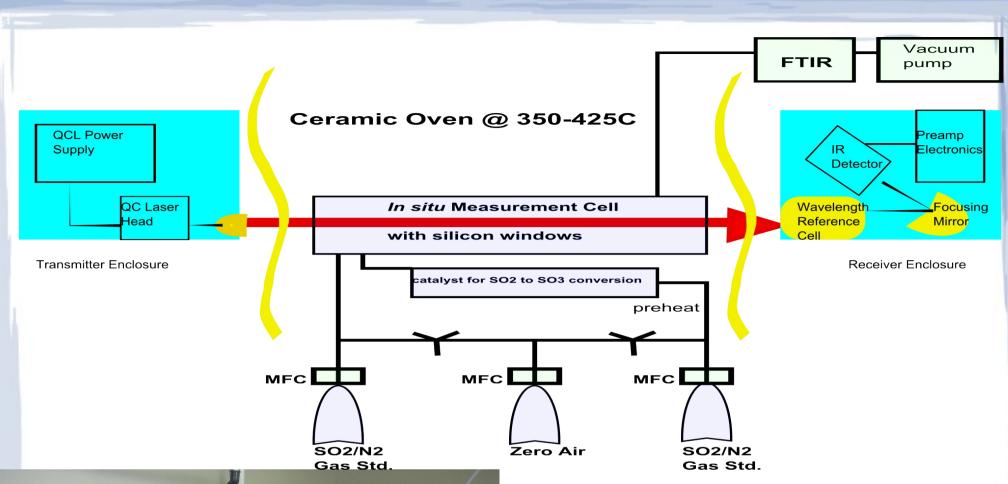
Greg Coleman and Brian Adair, Geosyntec Consultants Charlotte, NC GColeman@Geosyntec.com

Why SO₂ and SO₃ Monitoring?

- $SO_3 + H_2O \rightarrow H_2SO_4$ mist at the stack, i.e. "Blue Plume"
- SO₃ significantly reduces the efficiency of activated carbon for mercury capture
- SO₃/H₂SO₄ corrodes equipment
- SO₃ + NH₃ forms ABS, which clogs catalysts, air heaters and other equipment
- SO₂ oxidation changes over time in the SCR, which can actually <u>increase</u> SO₃
- <u>Continuous</u> measurement of SO₂/SO₃ allows for the optimization of sorbent injection toward its removal

Remote Sensing of SO₃ by Quantum Cascade Laser (QCL)

- A distributed feedback (for single mode/frequency output) QCL is mounted in air purged, temperature controlled, weather proof (NEMA) housings with a dual lens refracting telescope to collimate the infrared beam.
 - Data acquisition system can be located hundreds of meters away
 - System can be remotely controlled by cellular modem
- Center frequency of laser output selected to maximize SO₃ sensitivity while minimizing SO₂ and H₂O interferences (but still allowing for quantification of SO₂ and H₂O along with SO₃). Scanning range ~4 cm⁻¹.



Monitoring of SO_2/SO_3 by QCL: Calibrations

- The generation of calibrated spectroscopic references is very challenging, given the sensitive nature of the H₂SO₄ ↔ SO₃ + H₂O equilibrium.
- SO₃ generated in a heated (350-425 °C) cell by passing pre-heated dry SO₂/air mixtures over a catalyst at moderate flow rates.
- SO₂ to SO₃ conversion is tracked through real-time monitoring of SO₂ concentrations by extractive FTIR. Conversion efficiencies consistently maintained at ~95%.
- QCL spectra of SO₂ and SO₃ are recorded as quantitative references; SO₂/SO₃/H₂O mixtures were also generated for evaluation purposes.

Geosyntec.com

The SO_3 generation and certification scheme will be miniaturized and utilized as a field validation system.

Cross Duct Field Monitoring of SO₂/SO₃

- In situ (cross duct) monitoring <u>eliminates extraction issues</u> (tubing contamination, sample losses, chemical equilibria shifts, etc.) making SO₃/SO₂/H₂O measurements representative.
- Objective: Measure multiple compounds <u>simultaneously</u> and in <u>real</u> <u>time</u> with high resolution in time (< 1 minute) and concentration (< 1 ppm). Detection limits on the order 2.5 ppm*m (500 ppb in 5m duct).

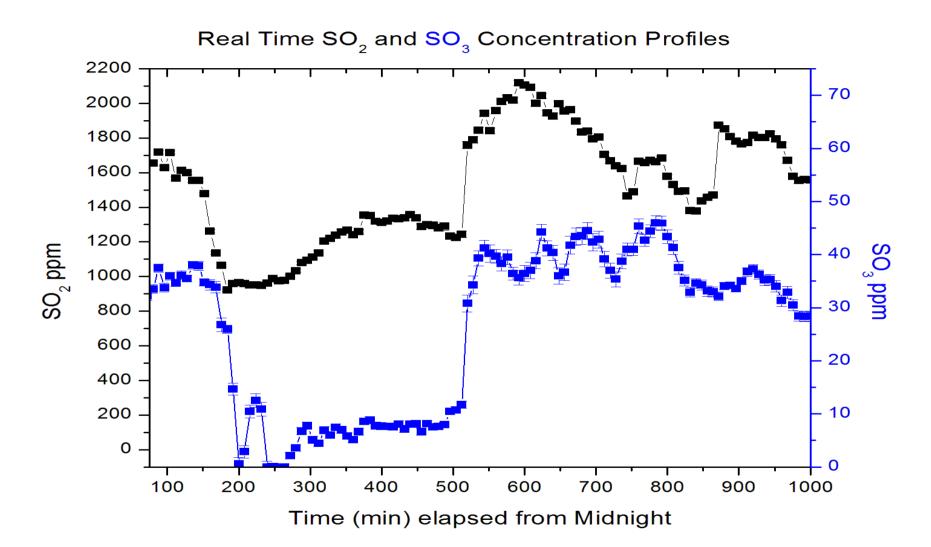
 SO_{2} , SO_{3} , NH_{3} , $H_{2}O$, NO, NO_{2} , $N_{2}O$, CO, CO_{2} , ...

 Integrate gas concentrations over the laser path to quickly get whole duct average concentrations.

Geosyntec.com

 The first field study was conducted with an open-path QCL monitoring system operating as a *bistatic* CEM. Beam path located directly downstream of an SCR outlet. Flue gas temps ~700 F, lime injection was being employed.

Cross Duct Monitoring of SO_2/SO_3 (cont.)

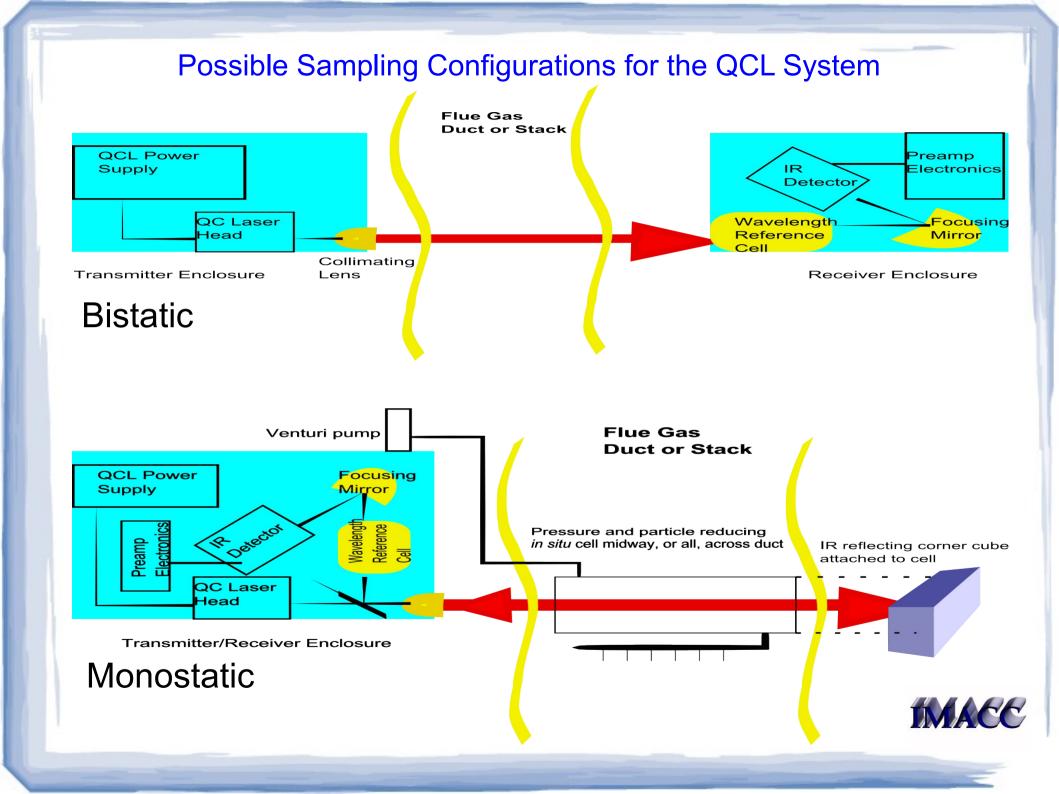

Receiver

Transmitter

Angle iron

Example of Monitoring Data

IMACC


Field Test Conclusions

- QCL monitor ran continuously for a designated three week period after installation while maintaining alignment.
- The real-time SO₂ concentrations from the QCL system were found to agree favorably with in line "reference" CEM measurements.
- The averaged real-time SO₃ concentrations from the QCL system were found to be comparable with concurrent CCS measurements.
- A small degree of measurement variability and higher detection limits have been introduced into the real-time SO_3 results due to low resolution SO_2/SO_3 spectral overlap at ambient pressures and laser power fluctuations.

Geosyntec.com

- Which becomes apparent, for these molecules, at gas pressures exceeding ~0.4 atm.
 - A design modification has been implemented to mitigate these effects:

Monostatic (with In Situ Cell) vs. Bistatic QCL System

- Reduced pressure sampling region for best spectral resolution, leading to lowest measurement variability and SO₃ detection limits (~2.5 ppm*m).
- Requires less infrastructure and resources; only one sampling port, and compressed air and power for one enclosure is needed.
- Better spectral resolution and reduced pressures enable quantification of H₂O, in addition to SO₂ and SO₃.
- Slightly more cost, but now a truly portable field monitoring system without alignment issues.

- Measurements for SO₂ and SO₃ conducted under native pressure conditions (SO₃ DL ~ 5 ppm*m).
- More measurement variability is introduced.
- Resources required for two devices; coaxial sampling ports needed.
- Less complexity and cost.

Conclusions

- The QCL monitor is a viable CEM system, or it can be used as a field sampling project monitoring tool.
- Bistatic QCL system available now, monostatic QCL system to be field demonstrated by May 2012 (probe now undergoing lab testing).
- It can be implemented at the inlet/outlet of the SCR, air heater, or stack (SO₂/SO₃/H₂O calibrations are available at temperatures ranging from ~100 – 425 C).
- Applications include:
 - Track real time changes in SO₂ oxidation across catalyst and downstream
 - Track potential SO₃ dew points when optimizing air heater operation
 - Optimize sorbent usage for SO₃ mitigation

