Low CapEX Solutions for Compliance with Industrial Boiler MACT

Connie Senior
ADA Environmental Solutions

McIlvaine Hot Topic Hour
March 22, 2012

ADA Environmental Solutions creates and delivers cutting edge technical and chemical solutions to reduce emissions from coal-fired power plants, Portland cement kilns and industrial boilers, helping customers meet environmental goals while balancing their business needs.
Key Points of This Presentation

• ICI Boiler MACT is a *multi-pollutant regulation* with limits for mercury, HCl, particulate matter, and carbon monoxide

• ICI Boiler MACT solutions for solid fuels:
 – Finding a low-cost solution for multiple pollutants is highly desirable: Hg, HCl, PM
 – Integration of sorbent injection with particulate control can provide control of both mercury and HCl
 – Sorbent selection and system design are critical
ICI Boiler Emission Limits

• Hg and HCl emissions are fuel-specific, therefore all solid fuels (Coal and Biomass) have the same limits
 – Gas and liquid fuels have separate limits
• PM and CO are equipment-specific, so limit depends on the type of combustion system and the fuel
• Dioxin/furan emissions regulated under at work practice standard
ICI Boiler Limits: How Do They Compare with Electric Utility Limits?

- Example: Coal-Fired Stoker, Bituminous Coal

<table>
<thead>
<tr>
<th>Boiler MACT Limits:</th>
<th>Utility MATS Limits:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM, lb/MMBtu</td>
<td>PM, lb/MMBtu</td>
</tr>
<tr>
<td>HCl, lb/MMBtu</td>
<td>HCl, lb/MMBtu</td>
</tr>
<tr>
<td>Hg, lb/Tbtu</td>
<td>Hg, lb/Tbtu</td>
</tr>
<tr>
<td>0.028</td>
<td>0.03</td>
</tr>
<tr>
<td>0.022</td>
<td>0.002</td>
</tr>
<tr>
<td>3.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Estimated emission at Boiler MACT Limit:

- Filterable PM\(^1\), gr/dscf
- \(HCl^1\), ppmvd
- Mercury\(^1\), µg/dscm

- Filterable PM\(^1\), gr/dscf
- 0.017
- 20.0
- 4.3

Estimated control efficiency, based on fuel:

- HCl
- 19%
- 98%

- Mercury
- 65%
- 86%

\(^1\)Concentrations at 3% \(O_2\)

INPUT COAL PROPERTIES

<table>
<thead>
<tr>
<th>Coal Rank</th>
<th>As-received coal composition</th>
<th>Dry coal composition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coal S, wt%</td>
<td>Coal Cl, µg/g</td>
</tr>
<tr>
<td>Bituminous</td>
<td>3.60%</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>Coal Ash, wt%</td>
<td>Coal Hg, µg/g</td>
</tr>
<tr>
<td></td>
<td>10.30%</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Coal HHV, Btu/lb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11,011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coal H(_2)O, wt%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.30%</td>
<td></td>
</tr>
</tbody>
</table>
The Compliance Challenge

• **Integrated Decisions**
 – Multiple regulations. Decisions on one pollutant may affect options for others

• **Tight Timeframes**
 – Many capital decisions must be made 2 to 3 years before implementation

• **Limited Resources**
 – Testing Services, Engineering and Construction Services, APC Equipment, Chemicals
Low CapEX Choices for ICI Boilers

• Units with hot-side ESP or Cyclones
 – No clear low capital options (mercury driver). A downstream fabric filter (TOXECON™) may be required.
 – Possible Hot-to-Cold Side ESP conversion

• Units with cold-side ESPs and Fabric Filters
 – Fuel (low mercury, low sulfur, low chlorine)
 – DSI as required to meet acid gas limits
 – Maximize ACI effectiveness
 • Minimize SO₃
 (DSI to mitigate or use alternative FGC)
Factors Affecting Mercury Control

- **Coal Type**
 - Halogen content (Cl, Br, other)
 - Sulfur content
 - Mercury content

- **Flue Gas**
 - Acid Gases (HCl, SO$_2$, SO$_3$)
 - Gas Temperature **

- **Boiler type**

- **Emission Control Equipment** (e.g. SCR, ESP, FF, etc.)

- **ACI Design**
 - Distribution, residence time, sorbent characteristics

Similar factors affect Hg removal from native carbon in ash and activated carbon injection

** High flue gas temperature. may require addition of economizer/air heaters
Halogen addition at various full-scale PRB boilers

Source: Dombrowski et al., 2006
Benefits of Oxidized Mercury

Many plants’ APCDs can take advantage of native capture...if there’s enough oxidized Hg (Hg$^{2+}$)
Activated Carbon Injection

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Range of AC for 90% Control (lb/MMacf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRB/SDA/FF</td>
<td>1 to 3</td>
</tr>
<tr>
<td>PRB/Toxecon</td>
<td>2 to 4</td>
</tr>
<tr>
<td>Bit/Toxecon</td>
<td>2 to not achieved</td>
</tr>
<tr>
<td>PRB/ESP</td>
<td>2 to not achieved</td>
</tr>
<tr>
<td>Bit/ESP</td>
<td>2.5 to not achieved</td>
</tr>
</tbody>
</table>

EPA Estimates 141 GW new ACI for utility boilers alone. Does not even count Industrial Boiler needs.
Activated Carbon Injection Summary of PC Fired Utility Boiler Mercury Control Results

![Graph showing Hg Removal (%) vs. Injection Concentration (lb/MMacf) for different systems: PRB ESP, SDA + FF, ESP with SO₃ Conditioning, LS Bit ESP, and HS Bit ESP.]}
SO₃ Injection and PAC Effectiveness

- SO₃ is used to condition fly ash for better capture in ESPs.
- Typical injection targets < 10ppm in gas phase.
- Any SO₃ in gas phase appears to affect Hg capture.

Ameren Labadie Data: DOE DE-FC26-03NT41986 and EPRI PRB, ESP.

Mississippi Power Plant Daniel
Low sulfur bituminous coal
Compliance Strategies for HCl

- **Scrubbed Units** typically achieve sufficient HCl removal
- **Unscrubbed Units:**
 - Biomass: Wide range of coal chlorine, depending on biomass source; some control might be needed
 - Subbituminous-fired: Little or now control required to keep HCl below limit
 - Bituminous-fired: HCl limits may be difficult to achieve without FGD
 - *DSI may be used, depending on coal chlorine content*
Dry Sorbent Injection (DSI) Sorbents for Acid Gases (SO$_2$, HCl, SO$_3$)

- Different sorbents have been used for removal of acid gases:
 - Limestone
 - Ca(OH)$_2$
 - MgO, Mg(OH)$_2$
 - Trona (sodium sesquicarbonate), sodium bicarbonate, sodium bisulfite

- Considerations in choosing a specific sorbent
 - What needs to be removed?
 - Level of control needed?
 - Balance-of-plant impacts
DSI and HAPs Compliance

• Acid Gases (HCl):
 ✓ Alkali injection can be effective for HCl trim control

• Mercury (Hg):
 ✓ Alkali injection can effectively be used to protect AC by lowering SO$_3$

• PM:
 ◇ Must consider potential impacts
Options for Total PM

- New fabric filter or ESP upgrade might be required
- Hot to Cold-Side ESP conversions (as needed)
- DSI + ACI + FF may be a viable option for to achieve combined HCl, Hg and PM controls (where coal sulfur and chlorine is limited)
Coal to Stack: Integrated Approaches for Multi-Pollutant Compliance

Examples:

• Fuel (low mercury, low sulfur, low chlorine)
• DSI as required to meet HCl limits and/or control SO$_3$ to maximize ACI effectiveness
• Utilize coal additives to manage ACI usage and Hg removal effectiveness
DSI-ACI Synergy: Example

Medium-sulfur bituminous plant
Lime injection to reduce SO$_3$ => improve ACI performance for Hg control
DSI-ACI Synergy: Example

Low-sulfur bituminous plant with SCR
Trona injection to reduce SO_3 => improve ACI performance for Hg control
Summary

HCl
- 0-90%% control required for coal-fired units – less reduction (if any) for biomass-fired units
- Bituminous coals have higher chlorine and require higher reductions

Mercury
- 65-90%% control required for coal-fired units – less reduction (if any) for biomass-fired units
- Achievable on most subbituminous and biomass units
- Limits may be challenging on units with higher sulfur coals and may require SO₃ mitigation

Total PM
- May result in new fabric filters or hot- to cold-side ESP conversions
Creating a Future with Cleaner Coal

ADA Environmental Solutions
(303) 734-1727