Low CapEX Solutions for Compliance with Industrial Boiler MACT

Connie Senior

ADA Environmental Solutions

McIlvaine Hot Topic Hour March 22, 2012

ADA Environmental Solutions creates and delivers cutting edge technical and chemical solutions to reduce emissions from coal-fired power plants, Portland cement kilns and industrial boilers, helping customers meet environmental goals while balancing their business needs.

NASDAQ: ADES

www.adaes.com

Key Points of This Presentation

- ICI Boiler MACT is a *multi-pollutant regulation* with limits for mercury, HCI, particulate matter, and carbon monoxide
- ICI Boiler MACT solutions for solid fuels:
 - Finding a low-cost solution for multiple pollutants is highly desirable: Hg, HCI, PM
 - Integration of sorbent injection with particulate control can provide control of both mercury and HCI
 - Sorbent selection and system design are critical

ICI Boiler Emission Limits

 Hg and HCI emissions are fuel-specific, therefore <u>all solid</u> fuels (Coal and Biomass) have the same limits

- Gas and liquid fuels have separate limits

- PM and CO are <u>equipment-specific</u>, so limit depends on the type of combustion system and the fuel
- Dioxin/furan emissions regulated under at work practice standard

ICI Boiler Limits: How Do They Compare with Electric Utility Limits?

HCI

98%

Example: Coal-Fired Stoker, Bituminous Coal

Boiler MACT Limits:				Utility MATS Limits:		
PM,	HCl,			PM,	HCI,	
lb/MMBtu	lb/MMBtu	Hg, lb/Tbtu		lb/MMBtu	lb/MMBtu	Hg, lb/Tbtu
0.028	0.022	3.1		0.03	0.002	1.2
Estimated emission at Boiler MACT Limit: Estimated emission at Utility MATS Limit:						
Filterable		Mercury ¹ ,		Filterable		Mercury ¹ ,
PM ¹ , gr/dscf	HCl ¹ , ppmvd	µg/dscm		PM ¹ , gr/dscf	HCl ¹ , ppmvd	µg/dscm
0.017	20.0	4.3		0.018	1.8	1.6
Estimated cor	ntrol efficiency,	based on fuel:		Estimated control efficiency, based on fuel:		

HCI	Mercury	
19%	65%	

¹Concentrations at 3% O₂

INPUT COAL PROPERTIES

		As-received co	oal composition	Dry coal composition		
		Coal Ash,	Coal HHV,	Coal H ₂ O,		Coal Hg,
Coal Rank	Coal S, wt%	wt%	Btu/lb	wt%	Coal Cl, µg/g	μg/g
Bituminous	3.60%	10.30%	11,011	3.30%	1000	0.1

© 2012ADA-ES

ADA

Mercury

86%

The Compliance Challenge

Integrated Decisions

Multiple regulations. Decisions on one pollutant may affect options for others

Tight Timeframes

 Many capital decisions must be made 2 to 3 years before implementation

Limited Resources

 Testing Services, Engineering and Construction Services, APC Equipment, Chemicals

Low CapEX Choices for ICI Boilers

- Units with hot-side ESP or Cyclones
 - No clear low capital options (mercury driver). A downstream fabric filter (TOXECON[™]) may be required.
 - Possible Hot-to-Cold Side ESP conversion
- Units with cold-side ESPs and Fabric Filters
 - Fuel (low mercury, low sulfur, low chlorine)
 - DSI as required to meet acid gas limits
 - Maximize ACI effectiveness
 - Minimize SO₃ (DSI to mitigate or use alternative FGC)

Factors Affecting Mercury Control

Coal Type

Halogen content (CI, Br, other) Sulfur content Mercury content

Flue Gas

Acid Gases (HCI, SO₂, SO₃) Gas Temperature ** Similar factors affect Hg removal from native carbon in ash and activated carbon injection

- Boiler type
- Emission Control Equipment (e.g. SCR, ESP, FF, etc.)
- ACI Design

Distribution, residence time, sorbent characteristics

** High flue gas temperature. may require addition of economizer/air heaters

Halogens Increase Oxidized Mercury

Halogen addition at various full-scale PRB boilers

Source: Dombrowski et al., 2006

Benefits of Oxidized Mercury

Many plants' APCDs can take advantage of native capture...if there's enough oxidized Hg (Hg²⁺⁾

Activated Carbon Injection

Configuration	Range of AC for 90% Control (Ib/MMacf)
PRB/SDA/FF	1 to 3
PRB/Toxecon	2 to 4
Bit/Toxecon	2 to not achieved
PRB/ESP	2 to not achieved
Bit/ESP	2.5 to not achieved

EPA Estimates 141 GW new ACI for utility boilers alone. Does not even count Industrial Boiler needs

Activated Carbon Injection Summary of PC Fired Utility Boiler Mercury Control Results

© 2012 ADA-ES

ADA

SO₃ Injection and PAC Effectiveness

- SO₃ is used to condition fly ash for better capture in ESPs
- Typical injection targets < 10ppm in gas phase
- Any SO₃ in gas phase appears to affect Hg capture

© 2012ADA-ES

Compliance Strategies for HCI

- Scrubbed Units typically achieve sufficient HCI removal
- Unscrubbed Units:
 - Biomass: Wide range of coal chlorine, depending on biomass source; some control might be needed
 - Subbituminous-fired: Little or now control required to keep HCl below limit
 - Bituminous-fired: HCI limits may be difficult to achieve without FGD
 - > DSI may be used, depending on coal chlorine content

Dry Sorbent Injection (DSI) Sorbents for Acid Gases (SO₂, HCI, SO₃)

- Different sorbents have been used for removal of acid gases:
 - Limestone
 - Ca(OH)₂
 - MgO, Mg(OH)₂
 - Trona (sodium sesquicarbonate), sodium bicarbonate, sodium bisulfite
- Considerations in choosing a specific sorbent
 - What needs to be removed?
 - Level of control needed?
 - Balance-of-plant impacts

DSI and HAPs Compliance

- Acid Gases (HCI):
 - ✓ Alkali injection can be effective for HCI trim control
- Mercury (Hg):
 - ✓ Alkali injection can effectively be used to protect AC by lowering SO₃
- PM:
 - Must consider potential impacts

Options for Total PM

- New fabric filter or ESP upgrade might be required
- Hot to Cold-Side ESP conversions (as needed)
- DSI + ACI + FF may be a viable option for to achieve combined HCI, Hg and PM controls (where coal sulfur and chlorine is limited)

Coal to Stack: Integrated Approaches for Multi-Pollutant Compliance

Examples:

- Fuel (low mercury, low sulfur, low chlorine)
- DSI as required to meet HCI limits and/or control SO₃ to maximize ACI effectiveness
- Utilize coal additives to manage ACI usage and Hg removal effectiveness

DSI-ACI Synergy: Example

Medium-sulfur bituminous plant Lime injection to reduce $SO_3 =>$ improve ACI performance for Hg control

DSI-ACI Synergy: Example

Low-sulfur bituminous plant with SCR

Trona injection to reduce $SO_3 =>$ improve ACI performance for Hg control

© 2012 ADA-ES

Summary

≻ HCI

- 0-90%% control required for coal-fired units less reduction (if any) for biomass-fired units
- Bituminous coals have higher chlorine and require higher reductions

> Mercury

- 65-90%% control required for coal-fired units

 less reduction (if any) for biomass-fired units
- Achievable on most subbituminous and biomass units
- Limits may be challenging on units with higher sulfur coals and may require SO₃ mitigation
- ➤ Total PM
 - May result in new fabric filters or hot- to cold-side ESP conversions

Creating a Future with Cleaner Coal

ADA Environmental Solutions (303) 734-1727

www.adaes.com

NASDAQ: ADES

