Mercury Measurement and Control

Sharon Sjostrom & Connie Senior ADA Environmental Solutions

Topics to Cover

- Overview of MATS for existing & new plants
- Measurement of Hg
- Capabilities of available control technologies for mercury control
- Coal to Stack: Integrated approaches for multipollutant compliance

MATS Final Limits (Coal)

• Standards for new units are based on outputs

Subcategory	Filterable PM	HCI	Mercury
New coal,	0.007 lb/MWh	0.0004 lb/MWh	0.0002 lb/GWh
≥8300 Btu/lb			
New coal,	0.007 lb/MWh	0.0004 lb/MWh	0.040 lb/GWh
<8300 Btu/lb			
Existing coal,	0.30 lb/MWh	0.020 lb/MWh	0.013 lb/GWh
≥8300 Btu/lb			
Existing coal,	0.30 lb/MWh	0.020 lb/MWh	0.040 lb/GWh
<8300 Btu/lb			

- Standards for existing units are based on inputs
- Standards for new units (bituminous, subbituminous) are ~65 times lower than for existing units!

Mercury Measurement

- Continuous measurement of Hg required
 - CEM or Sorbent Trap
- Emissions averaging
 - For existing bituminous/subbituminous units, limit of 1.2 lb/TBtu (30-day average) or 1.0 lb/TBtu (90-day average)
- Facility-wide averaging for similar units
- Challenges in measuring very low levels of Hg

The Compliance Challenge

Integrated Decisions

Multiple regulations. Decisions on one pollutant may affect options for others

Long-range, multi-plant CapEx decisions, fuel decisions

Tight Timeframes

Implementation by 2015 for MATS and CSAPR Rapid, informed decisions are now required

Limited Resources

Testing Services, Engineering and Construction Services, APC Equipment, Chemicals

Fuel Choice Affects MATS Compliance

 Mercury <u>inputs</u> vary by region and by mine within a region

MATS sets limits on Hg emissions, not percent reduction

The bar is higher (for control) when Hg input is higher

- SO₂ and HCI emissions might also have to be controlled under MATS (or CSAPR)
- Sulfur and chlorine in coal affect ability to reduce Hg emissions
- Finding the perfect MATS coal...?

MATS Compliance Limits: Example for Existing Bituminous Plant

Final MACT Limits:

PM,	HCI,	SO ₂ ,	
lb/MMBtu	lb/MMBtu	lb/MMBtu ¹	Hg, lb/TBtu
0.03	0.002	0.2	1.2

Estimated control efficiency, based on fuel:

HCI	SO ₂ ¹	Mercury
98%	97%	86%

¹Alternate acid gas limit for units with scrubbers

²Concentrations at 3% O₂

INPUT COAL PROPERTIES

	As-received coal composition			Dry coal co	omposition	
Coal Rank	Coal S, wt%	Coal Ash, wt%	Coal HHV, Btu/lb	Coal H ₂ O, wt%	Coal Cl, µg/g	Coal Hg, µg/g
Bituminous	3.60%	10.30%	11,011	3.30%	1000	0.1

Factors Affecting Mercury Control

Coal Type

Halogen content (CI, Br, other) Sulfur content Mercury content

Flue Gas

Acid Gases (HCI, SO₂, SO₃) Gas Temperature Similar factors affect Hg removal from native carbon in ash and activated carbon injection

- Boiler type
- Emission Control Equipment (e.g. SCR, ESP, FF, etc.)
- ACI Design

Distribution, residence time, sorbent characteristics

Native Mercury Removal (Average %): The Good, the Bad, and the Ugly...

	Bituminous	Subbit.	Lignite
CSESP	41	17	-2
+ WFGD	73	21	45
HS ESP	22	14	
+ WFGD	44	25	
FF	87	71	
+ WFGD	78		
SDA + FF	95	31	29
SDA + ESP	50	50	
WPS	14	-2	30
Projected for MATS	80-90 +	80-90 +	60-90 +

Analysis of 1999 EPA ICR data

SCR plus FGD Increases Hg Removal

Source: Bituminous-fired plants from Consol sampling program

SCR-FGD Reduces Hg Emissions

...but >90% removal not always achieved and trim control with ACI might be needed

Source: Bituminous-fired plants from Consol sampling program

© 2012 ADA-ES

AD

Halogens Increase Oxidized Mercury

Halogen addition at various full-scale PRB boilers

Source: Dombrowski et al., 2006

Benefits of Oxidized Mercury

Many plants' APCDs can take advantage of native capture...if there's enough oxidized Hg (Hg²⁺⁾

Halogens in Wet Scrubbers

- Adding halogens (CI or Br) increases oxidized Hg, which increase capture of Hg in scrubber
- Wet FGD scrubbers remove halogens efficiently
 - Average CI removals for wet FGDs (2010 ICR): 81% for subbituminous, 97% for bituminous
 - Removal of Br at Plant Miller wet FGD: 94-96%
 (Dombrowski et al., 2008)
- Halogens build up in wet scrubber liquor

Corrosion in Flue Gas

- Chlorine corrosion in furnaces can occur for very high levels of chlorine in coal (> 2000 µg/g)
 - Bromine addition at much lower concentrations
- Indirect evidence that HBr might be more corrosive than HCI at flue gas temperature
- No direct comparison, but HBr corrosion higher than baseline (no HBr) in simulated flue gas (6-month study)

US Coal-Fired Generation Fleet

More than 1100 units in operation ~ 317 GW

- ~ 66% have SO₂ or NOx controls
- Unscrubbed units
 - ~ 50 GW bituminous
 - ~ 60 GW subbituminous

*http://www.eia.gov

Activated Carbon Injection

Configuration	Range of AC for 90% Control (Ib/MMacf)
PRB/SDA/FF	1 to 3
PRB/Toxecon	2 to 4
Bit/Toxecon	2 to not achieved
PRB/ESP	2 to not achieved
Bit/ESP	2.5 to not achieved

EPA Estimates 141 GW new ACI

Activated Carbon Injection Performance Depends on Fuel Choice

© 2012 ADA-ES

SO₃ Injection and PAC Effectiveness

- Any SO₃ in gas phase appears to affect Hg capture
 - SO₃ is used to condition fly ash for better capture in ESPs
 - SO₃ higher in bituminous flue gas, especially after SCR
- Typical injection targets < 10ppm in gas phase

Compliance Strategies for Mercury

- 80 to >90% control at the stack to meet proposed MATS emission limits required for most units
- For units with FGD/SCR:

Low conversion SCR catalyst and minimize ammonia slip Minimize re-emission of Hg⁰ from wet FGD

- MATS limits achievable with ACI or ACI + coal additives on most subbituminous units if SO₃ flue gas conditioning (FGC) is eliminated
- MATS limits may be challenging on units with higher sulfur coals and may require SO₃ mitigation

Coal to Stack: Integrated Approaches for Multi-Pollutant Compliance

Examples:

- Fuel (low mercury, low sulfur, low chlorine)
- DSI as required to meet HCI limits and/or control SO₃ to maximize ACI effectiveness
- Manage SCR operation and catalyst choice to increase fraction of oxidized mercury and resulting removal in WFGD
- Utilize coal additives to manage ACI usage and Hg removal effectiveness

DSI-ACI Synergy: Example

Medium-sulfur bituminous plant Lime injection to reduce $SO_3 =>$ improve ACI performance for Hg control

DSI-ACI Synergy: Example

Low-sulfur bituminous plant with SCR

Trona injection to reduce $SO_3 =>$ improve ACI performance for Hg control

© 2012 ADA-ES

Summary: The Multi-Pollutant View

Mercury

- 80 to >90% control required for most units
- Achievable on most subbituminous units if SO₃ FGC is eliminated

 Limits may be challenging on units with higher sulfur coals and may require SO₃ mitigation

≻ HCI

- > 90% control required for most bituminous units. May require new scrubbers for some units.
- < 80% control required for most plants with low-rank coals. Should be achievable with fuel management, DSI or existing FGD for most plants.

➤ Total PM

• May result in several new fabric filters

Energizing the Future with Cleaner Coal

ADA Environmental Solutions (303) 734-1727

www.adaes.com

NASDAQ: ADES

