“HOT TOPIC”
EXPANSION JOINT
PROPER DESIGN

Chris Dyjak – Manager of Expansion Joints
at EFFOX-FLEXTOR (A CECO Environmental Company)

February 24th, 2011
EFFOX-FLEXTOR

- Established 1980
- Effox-Flextor merger creates a world leader in DAMPERS and EXPANSION JOINTS
- Engineer, Design & Manufacture Dampers and Expansion Joints
- Staff of Engineers with over 100 years of combined experience in EJ industry.
- Active member in FSA (Fluid Sealing Association)
Proper Expansion Joint Design Criteria

“The Better the information the Better the results”

Several Factors Important in EJ Design:

- True Temperature Data
- Accurate Movements
- Ductwork Tolerances
True Temperature Data

- **Operating / Design Temps**
 - Design Temperature should be based on actual continuous operating conditions.

- **Excursion Temps**
 - Realistic Maximum intermittent conditions, frequency and duration.

- **Ambient Conditions** (High/Low)
 - Possible elevated external temperature at belt surface due to confined area or other radiant heat source.
 - Low temps at operation and outage periods.

- Critical on FGD applications near dewpoint
FGD Applications

- Confirm Design, Operating & Dewpoint Temps
- Select belt material suitable for service
- Minimize EJ setback / cavity
- Externally insulate if MAX temperatures will NEVER exceed belt continuous rating
- Recommended: Viton integrally flanged U-belt
Accurate Movements

- Base thermal movements on operating and max design temp not excursion
- Provide thermal movements @ excursion conditions for EJ manufacturer design information
- Do NOT add additional tolerances to provided movements
- Limit lateral to 3” max without cold preset in ductwork.
- Seismic and Wind load movements should be considered excursion conditions acting on EJ in one direction per occurrence.
- Excessive design movements result in reduced EJ belt life at normal operating conditions
<table>
<thead>
<tr>
<th>TYPE</th>
<th>ACTIVE LENGTH</th>
<th>AXIAL COMPRESSION</th>
<th>AXIAL EXTENSION</th>
<th>LATERAL MOVEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Layer</td>
<td>6" (150mm)</td>
<td>2" (50mm)</td>
<td>1/2" (13mm)</td>
<td>+/- 1" (25mm)</td>
</tr>
<tr>
<td>Elastomer or Fluoroplastic</td>
<td>9" (230mm)</td>
<td>3" (75mm)</td>
<td>1/2" (13mm)</td>
<td>+/- 1 1/2" (38mm)</td>
</tr>
<tr>
<td>Flexible Element</td>
<td>12" (305mm)</td>
<td>4" (100mm)</td>
<td>1" (25mm)</td>
<td>+/- 2" (50mm)</td>
</tr>
<tr>
<td>Composite Type</td>
<td>6" (150mm)</td>
<td>1" (25mm)</td>
<td>1/2" (13mm)</td>
<td>+/- 1/2" (38mm)</td>
</tr>
<tr>
<td>Flexible Element</td>
<td>9" (230mm)</td>
<td>2" (50mm)</td>
<td>1/2" (13mm)</td>
<td>+/- 1" (25mm)</td>
</tr>
<tr>
<td></td>
<td>12" (305mm)</td>
<td>3" (75mm)</td>
<td>1" (25mm)</td>
<td>+/- 1 1/2" (38mm)</td>
</tr>
<tr>
<td></td>
<td>16" (405mm)</td>
<td>4" (100mm)</td>
<td>1" (25mm)</td>
<td>+/- 2" (50mm)</td>
</tr>
</tbody>
</table>

Provided by FSA
Stack Inlets

- Confirm Operating & Excursion movements required for Thermal & Non-Thermal conditions
- Design EJ for typical operating conditions taking into consideration normal Seismic / Wind loads
- Multi-directional Lateral movements possible
- Excessive Movements = Excess Belt at normal Operation Possible shortened belt life from instability (Flutter)
- Once in a Lifetime Occurrences
Ductwork Tolerances

- Maximum duct offsets as indicated in FSA guidelines: ½" (13mm) Compression, ¼" (6mm) Extension, ½" (13mm) Lateral
- Additional offsets limit movement capabilities and sacrifice service life
- Special attention is required at EJ location where Inlet side of ductwork breaching is by one contractor and outlet by another.
- Mating Ductwork must conform to structural tolerances allowed by AISC structural Steel Codes at both EJ breach inlet and outlet flanges