

Dry Sorbent Injection and Gas Co-Fire / FLGR for Small to Medium Plants

McIlvaine Hot Topic Hour:

Dry Sorbents and Systems and Material Handling in Coal-fired Power Plants

Presented by: Chetan Chothani

JUNE 7 / 2012

The Balance of Power

CE ISSUES, MANAGIN

Regulations: MATS **CSAPR** NAAQS **Coal Residuals** Wastewater **GHG BACT**

HF BALANCE OF POW

BALANCE-OF-PLANT INPACTS-EMISSIONS CONTROL, PROFILABILITY Fuel Flexibility (Coal V/S Gas) Cost of Compliance **Retire Plants?**

Regulatory Compliance

• MATS (in effect)

- HCI (0.002 Lb/MMBtu) (SO₂ Surrogate 0.2 lb/MmBtu)
- Hg (1,2 Lb/Tbtu)
- PM (0.03 lb/MMBtu)

CSAPR (Currently Stayed)

- SO₂ (Reduction of Approx 50 to 60 % from 2005 Levels)
- NO_x (Reduction of Approx 40 to 50 % from 2005 Levels)

Plants with SCR + Scrubber

• MATS

- HCI (Scrubber)
- Hg (SCR Oxidizes; Scrubber Captures)
 - ACI to Augment as necessary; DSI can help with SO₃ interference
- PM (SO₃ contributes to Method 5)
 - DSI can help

• CSAPR

- SO₂ (Scrubber)
- NO_x (SCR)

• In general, there is a path to compliance

Plants without SCR & Scrubber

Typically 300 MW and below

• MATS

- HCI (*DSI*)
- Hg (ACI + DSI for SO_3)
- PM (DSI for SO_3)

CSAPR

- SO₂ (*DSI*?)
 - Sodium Bicarb can deliver 90% reduction. ESP Loading and Flyash sales are a concern
 - Hydrated Lime can deliver 50 to 70% reduction. ESP Loading is a concern
- NO_x (SNCR?)
 - SNCR performance is limited to less than 30% and inconsistent based on temperature fluctuations and boiler operations

In general, not many good options available. DSI is not viable by itself.

Component Approach

Maybe a Sequential Approach would work?

- Convert some heat input to gas to realize SO₂ and NO_x reductions and take advantage of lower fuel pricing
- Couple the entire combustion output with FLGR to reduce Nox with an additional SO₂ drop,
- Polish the SO₂ with DSI now that the net particulate is reduced

Partial Natural Gas Conversion

Natural Gas Co-Fire

Co-Fire?

• Uses Existing Major Assets:

- No Heat Transfer Modifications or Derates required
- Allows for Fuel Flexibility as Coal/Gas Pricing moves

Dispatch Consideration

- Gas in Upper Registers can improve Load Ramp and Superheat Temperature control
- Gas In upper registers may allow for reduced MSL

Co-Firing will require flexible modifications to burners

- Should be accomplished mill by mill
- Introduction of natural gas ports surrounding the main coal pipe

Fuel Lean Gas Reburn

Fuel Lean Gas Reburn (FLGR)

• Injects 3 to ~10% of Fuel into Upper Furnace

- Natural Gas Injected in Upper Furnace in amount sub stoichiometric to total flue gas oxygen,
- Localized gas pockets create fuel RICH zone where CH_4 reduces NO_x to $NH + CO + H_2O$
- Upon re-entrance into O₂ rich zones, CO completes to CO₂
- When passing the 1750 F temperature zone, some NH compound provides a secondary SNCR action

13 Installations – Proven Performance

FLGR Performance:

Up to 30% NO_x

Amine-Enhanced FLGR (AE-FLGR) can deliver 50% NO_x reduction

SO₂ equal to Gas Rate

Dry Sorbent Injection

Hydrated Lime/Sodium Bicarbonate

Equipment and Layout

Equipment and Layout

DSI for SO₂

• A Great deal is known about this work:

- Removal rates up to 90+% with SBC
- Removal rates between 50% and 70% with Hydrate
- Effects on fly ash utilization potential
- Effects on particulate collection system
- Effects on ash handling system

50% 🗖

• Co-Fire @ 25%

- SO₂ Reduction: 25%
- NO_x Reduction: 20%
- Flyash reduction: 25%

Target

Ν

Ο

Χ

S

0

2

60%

Achieving Compliance : FLGR

• Gas Injection Rate @ 10%

- SO₂ Reduction: 10%
- NO_x Reduction: 30%
- Flyash Reduction: 10%

of DSI <= reduction in flyash

Additional Particulate loading

SO₂ reduction required = 25% of base or 40% of remaining

Easily achieved by DSI

Achieving Compliance : DSI

60%

Target

Other benefits of Gas Co-Fire

Hidden advantages

- Improved load following and low load turn-down,
- Improved ignition system and warm-up,
- Increased peaking, and Unit capacity & reliability,
- Better SH/RH control,
- Reduced fan loading of both primary & secondary fans,
- Reduced fuel inventory,
- More uniform and increased flame zone O₂,
- Consequently reduced slag formation problems.

Operating advantages

- Lower O₂ operation,
- Reduced SO₃, acid, air-heater, back-end and plume problems,
- Reduced LOI, leading to cleaner ash and better ESP operation,
- More salable ash,
- Dedicated fuel supply contracts.

- DSI is a useful technology for HCI and SO₃ mitigation for plants with SCR and Scrubber
- DSI can be a viable technology for compliance for plants without an SCR and Scrubber as part of a package that includes Gas Co-Fire and FLGR

Questions?