

Improving Power Plant Efficiency and Power Generation August 8th, 2013

Coal Creek Station

- Coal Creek Units #1 and #2...
 - 2 X 600 MW Natural Circulation
 - Tangentially Fired, Dual Furnace
 - 8 X 8 burners, plus SOFA
 - Eight Pulverizers per Unit
 - Mine Mouth, ND Lignite
 - 6,200 BTU/lb (14.4 MJ/kg)
 - 38% moisture
 - Commissioned 1979, 1981
 - Base Loaded
 - Wet FGD's, No SCR's
 - Closed Loop Cooling

CONNIDIENTIALAL22 GREAT RIVER ENERG

A Touchstone Energy* Cooperative 🌾

Efficiency Improvements: GRE

- Turbine blades
- Cooling Towers
- Simulator
- Ventilation
- Variable packing

- Fans
- Controls
- Leak detection
- Compressed air
- 605,771 tons

- Coal Drying/beneficiation
- 4%, 400,000 tons

Problem Statement:

- Plant performance is based on 6,800 BTU/lb (15.8 MJ/kg) fuel (with normal margins), but delivered fuel HHV has rarely exceeded 6,200 BTU/lb (14.4 MJ/kg)
- As a result....
 - Lost Boiler And Cycle Efficiency
 - 9% Higher Coal Flow Rate Than Design
 - 20 MW Of Station Service Power
 - 20% Higher Flue Gas Flow Rate Than Design
 - High Exit Gas Temperature
 - Lost Spare Mill Capability
 - Increased Operating And Maintenance Costs
 - Flue Gas Flow Limited Scrubbers! CONFIDENTIAL- 4 GREAT RIVER ENERGY® A Touchstone Energy® Cooperative

DryFiningTM Process

Solution

- Objective....
 - Restore lost performance by removing moisture in the incoming fuel stream just prior to bunkering
- How....
 - Employ waste heat to reduce moisture content of the lignite conveyed to the bunkers
- Approach....
 - Demonstrate and Select Basic Drying Process Concept
 - Develop "Proof Of Concept" Pilot Plant
 - Develop Dryer Design And Predictive Performance Modeling
 - Prototype Full Scale Dryer Design
 - Integrate Full Scale Commercial Demonstration Into Existing Plant Project

2 Ton/Hr Pilot Coal Drying

Prototype Dryer: Unit 2 East

Prototype Coal Dryer

- Maximum capacity 112.5 tons/hr
- Removed approx. ¼ of coal moisture.
 - Dried lignite from 38.5% to 29.5% moisture
 - Improved HHV from 6,200 BTU/lb (14.4 MJ/kg) to 7,045 BTU/lb (16.4 MJ/kg)
- Fully automated operation, integrated into the plant control system.
- Nine patent applications on dryer design and control filed by GRE (six awarded).

A Touchstone Energy* Cooperative

CONFIDENTIAL-9 GREAT RIVER ENERG

Coal Drying Testing

10 A Touchstone Energy* Cooperative 🔨 Confidential

Copyright 2006 Great River Energy - All Rights Reserved

Boiler Efficiency Improvement

Unit #2 "Complete" April '08

December 2009

DryFining Results

- □ 25% less H₂O dry lignite from 38 to 29% moisture, improving HHV from 6,100 to 6,800 BTU/lb
- 54% less SO₂ Segregation of ash minerals, plus improved collection efficiency
- 40% less Hg Segregation of ash minerals, plus improved collection efficiency
- 32% less NO_x- Reduced volumetric release rate, improved fineness and air & fuel distribution to furnace
- □ 4% less CO₂ 4% improved cycle efficiency

2009 to July 2013

coal/Gkw

System Performance Impacts:

• Observed:

- Each unit now operates with N-1 pulverizers in service
- Total station service reduced
- Boiler thermal efficiency increased by 3.7% (on HHV basis)

• Expected:

- Further reductions in NO_x as the furnace is retuned to benefit from increased SOFA capacity and improved fuel distribution
- <u>Substantially</u> reduced routine pulverizer, boiler, & AQCS maintenance costs

So, In General...

Coal Drying as needed

On demand drying, no protracted storage limits nor risk of spontaneous combustion

Moisture reduction

- Lower fuel throughput
- Boiler efficiency & net heat rate improvement
- Station service reduction
- Flue gas volume reduction

Emissions effects

- Pre-combustion segregation of Sulfur, Mercury, Iron
- NO_x reduction from fuel distribution improvement and volumetric release reduction
- CO₂ reduction equivalent to net heat rate improvement

For further Information:

TECHNICAL:

• Charlie Bullinger (<u>cbullinger@grenergy.com</u>) at (701)250-2162

COMMERCIAL:

• Sandra Broekema (<u>sbroekema@GREnergy.com</u>) (763)445-5304

