

Fuel Impacts on SCR Catalysts is "Hot Topic" on June 30, 2011

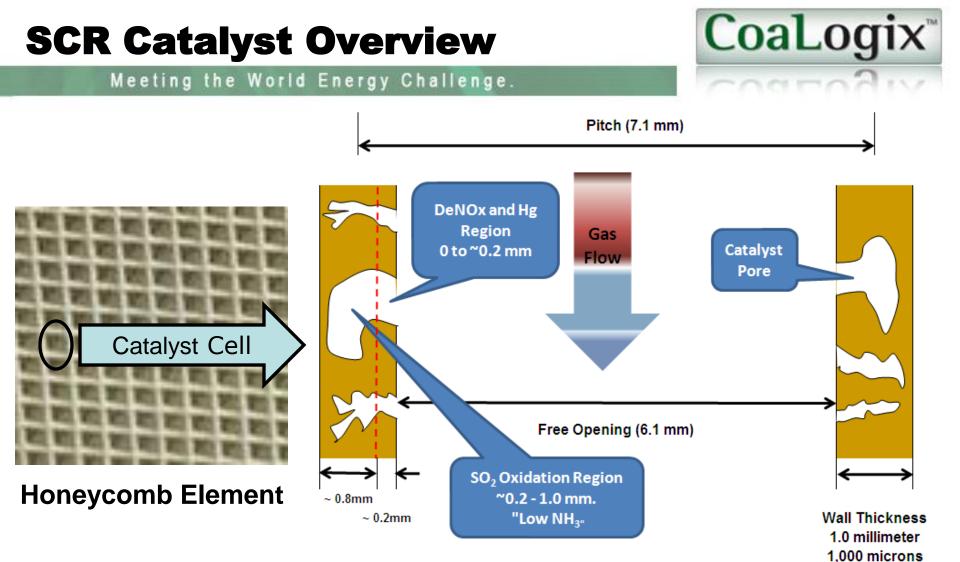
www.mcilvainecompany.com

Brian Adair Director of Technology Development SCR-Tech, LLC, a CoaLogix Company

June 30, 2011

Initial Considerations

Meeting the World Energy Challenge.



Coal is the largest operating expense for a power plant

 SCR catalyst is often considered the sacrificial expense for burning less expensive or not the original designed coal

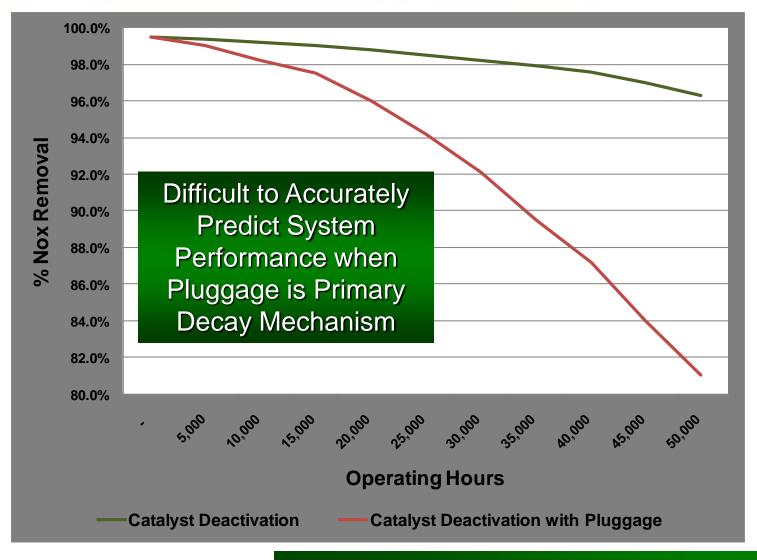
For SCR System Performance

- Fly-ash loading
- Pressure drop
- DeNOx performance
- Ammonia slip
- Plugging
- Flue gas temperature
- Sulfur content in coal & SO₂ conversion
- Poisons & blinding agents (e.g. As, Ca, Na, K, P ...)
- Next planned outage

- Visible surface ~ 400 m²/m³
- Catalytic surface at 65 m²/g
- 30 million m²/m³

Fuel Related Catalyst Deactivation Mechanism: Physical

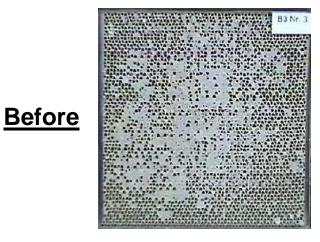
Meeting the World Energy Challenge.


Catalyst plugging

- Alkali and alkaline earth metals act as "flux" to reduce ash fusion temperature → large particle ash or LPA
- LPA build-up cuts flow through catalyst channels
- Fly-ash also can build up to block channels
- Direct reduction in available catalyst surface
- Easily detected (reversible via regeneration process)

Effect of SCR Pluggage

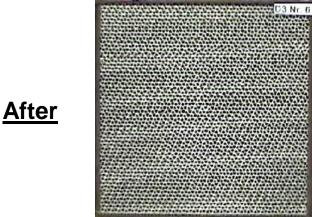
Meeting the World Energy Challenge.



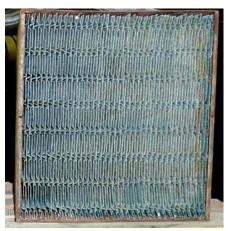
Plugging is Reversible

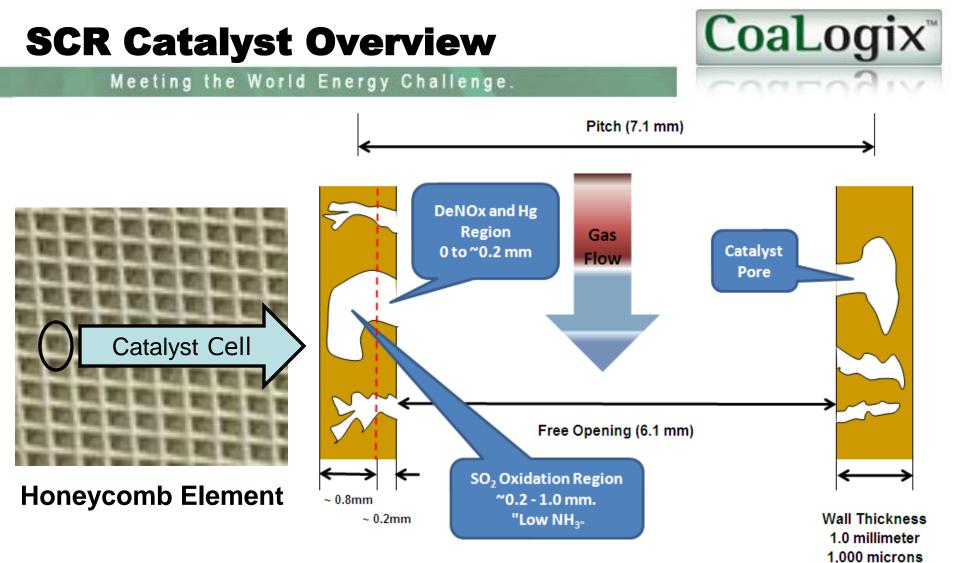
Meeting the World Energy Challenge.

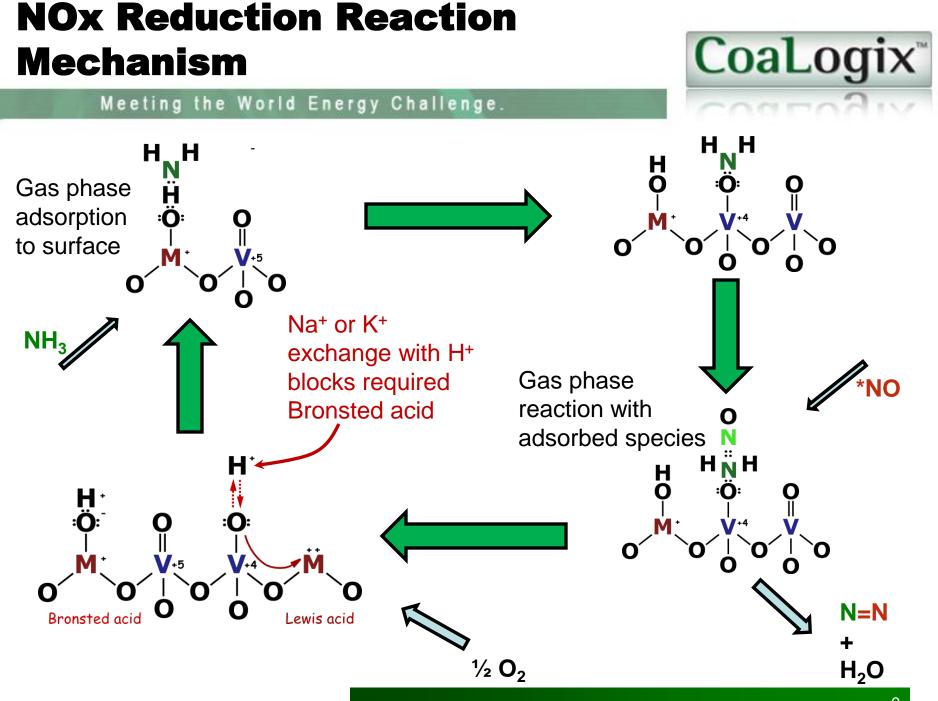
Corrugated



Honeycomb




Plate


- Visible surface ~ 400 m²/m³
- Catalytic surface at 65 m²/g
- 30 million m²/m³

Fuel Related Catalyst Deactivation Mechanisms: Physical

Meeting the World Energy Challenge.

Pore mouth blinding

- Silica & aluminosilicate <u>particles</u> block access at pore mouths
- Silica deposition as "glass" (-[SiO₂]-)_n blocks catalyst access at pore mouths
- CaO in fly ash reacts with SO₃ to form CaSO₄ (gypsum) or CO₂ to form CaCO₃ (calcium carbonate)
- A common form of activity loss (reversible *via* regeneration)

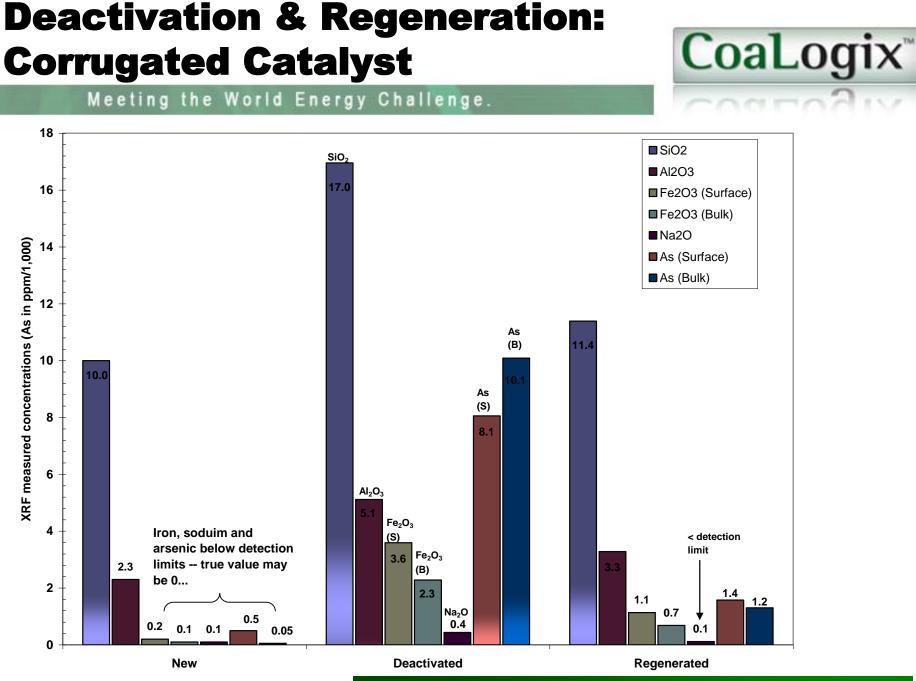
SCR Catalyst Deactivation Mechanism: Chemical Poisons

Meeting the World Energy Challenge.

CoaLogix[®]

- Alkaline metal poisoning (Na, K)
 - Formation of metal salt complexes reduces V₂O₅ activity
 - Alkaline metal adsorption changes surface Bronsted/Lewis acid balance (reversible via regeneration)

Phosphorous poisoning


 High phosphorous coals fired in "reducing environment" (low NOx burners) generated PX₃ species that actively poison V₂O₅ (reversible *via* regeneration)

Arsenic poisoning

- Gaseous arsenic (As₂O₃) condenses in catalyst pores
- Further oxidation to solid As₂O₅ to permanently plugs pore mouths
- Combines with vanadium to form inactive V-As species
- Mitigation by high-Ca coal or addition of limestone (CaCO₃)
- CaO + As₂O₃ + H₂O forms solid calcium arsenate trihydrate
- Distinct chemical signature (reversible via regeneration)

Some heavy metals, i.e. chromium, cannot be easily removed

Deactivation & Regeneration: CoaLogix[®] **Honeycomb Catalyst** Meeting the World Energy Challenge. Arsenic 25 SiO2 (S) 21.0 Major deactivation modes: SiO2 (B) 20 19.3 Fe2O3 (S) Fe2O3 (B) Pore blinding / masking by silica Na2O (S) XRF measured amount (As in ppm/1,000) Na2O (B) Arsenic poisoning Silica As (S) 15 • Iron As (B) Sodium 12.3 10 Surface sodium below XRF 7.6 detection limits lron Sodium 5.5 5.5 5.3 5 3.4 2.3 2.1 2.1 1.9 1.9 1.8 1.3 1.1 0.9 0.6 0.3 0.10 0.9 0.5 _{0.3 0.10} 0.32 0.21 _0.6 0.20 0.12 .20 0 Deactivated PCS-1 PCS-2 PCS-3

Coal General Characteristics

Meeting the World Energy Challenge.

Lignite and sub-bituminous coals

- High in alkali and alkaline earth metals: Na, K, Ca, Mg
- High in silicates, alumina, aluminosilicates, phosphates and Hg°
- Low in sulfur and halogen

Bituminous coals

- High in sulfur, iron, arsenic, "heavy metal" pyrites (metal sulfides)
- Low in calcium and alumina

Biomass

High in alkali (Na, K) and phosphates

Pet coke

Enriched in vanadium and heavy metals – chromium, cadmium

Coal Resource Classification System (U.S. Geological Survey)

Meeting the World Energy Challenge.

- **CoaLogix**[®]
- □ High-ash coal: > 15 percent total ash (as-received basis)
- Medium-ash coal: 8 percent to 15 percent ash
- Low-ash coal: < 8 percent total ash</p>
- □ High-sulfur coal: > 3 percent or more total sulfur
- □ Medium-sulfur coal: 1-3 percent total sulfur
- Low-sulfur coal: < 1 percent total sulfur</p>

Coal Sulfur Content

CoaLogix[®]

Meeting	the Wo	rld Ener	gy Chal	lenge.
---------	--------	----------	---------	--------

	Region	No. Samples	Organic % S	Pyritic % S	Total % S
	N. Appalachian	227	1.00	2.07	3.01
	S. Appalachian	35	0.67	0.37	1.04
	E. Midwest	95	1.63	2.29	3.92
	W. Midwest	44	1.67	3.58	5.25
	Western	44	0.45	0.23	0.68
		Sulfur Content Range (% w/w)			
Rank	Rank <u>(</u>	<u>) - 0.07</u>	<u>0.08 – 1.0</u>	<u>1.1 – 3.0</u>	<u>≥ 3.1</u>
Ant	thracite	95.6	0.6	2.9	
Bit	uminous	14.3	15.2	26.2	44.3
Sul Bitu	b uminous	66.0	33.6	0.4	
Lig	nite	77.0	13.7	9.3	
U.S Ave	S. erage	46	19	15	20

The "Glue" That Blinds: SO₃

Meeting the World Energy Challenge.

Reacts with alkaline earth metal oxides to form masking and blinding agents – CaSO₄

\Box Reacts with NH₃ to form sulfates (e.g. NH₄HSO₄)

- Temperature range 350°F to 450°F when molar concentration of SO₃ exceeds molar concentration of NH₃ plugs air heater
- Temperature range of 530°F to 620°F may condense in SCR and plug / blind (defines minimum operating temperature)

Reacts with vanadium from pet-coke combustion to form vanadyl sulfate

- Deposit at high levels on SCR catalyst 20% or more
- Increase in SO₂ to SO₃ oxidation rate
- Slows increase in rate of DeNOx activity loss until pores are blocked then activity drops rapidly

Deactivation Generalizations

Meeting the World Energy Challenge.

Fuel Type	Primary Deactivation Elements	Expected Activity @ 16,000 h	
Petcoke	Heavy metals	K/K ₀ > 0.80	
Sub-bituminous Coal - Powder River Basin	Calcium (Ca) and Phosphorus (P)	$K/K_0 = 0.65 - 0.85$	
Bituminous Coal	Arsenic (As)	$K/K_0 = 0.60 - 0.75$	
Lignite	Sodium (Na) & Potassium (K)	$K/K_0 = 0.60 - 0.70$	
Biomass	Phosphorus (P) , Potassium (K), Sodium (Na)	$K/K_0 = 0.45 - 0.55$	
Municipal Solid Waste (MSW)	Heavy metals, halogens, Potassium (K), Sodium (Na)	K/K ₀ < 0.50	

Summary

Meeting the World Energy Challenge.

- Consult your SCR Catalyst Manager to model fuel change impacts on catalyst life and system performance
- Less expensive coal generally "trumps" more frequent catalyst replacement; but total economics and system performance must be evaluated

Most important factors to determine catalyst type, formulation and geometry:

- Ash content
- Sulfur content
- Arsenic & calcium content
- Operating temperatures
- Flue gas velocity