EMO®

March 28, 2013

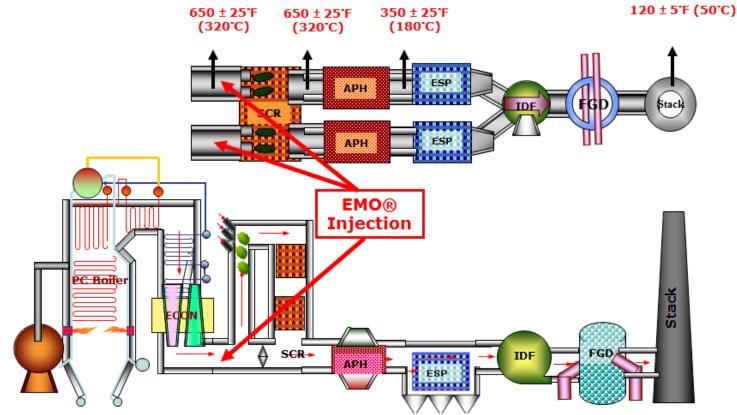
.

Bobby I.T. Chen *Client Program Manager*

Shaw Group is now Chicago Bridge & Iron

- Chicago Bridge and Iron (CB&I) has completed the acquisition of the Shaw Group.
- The effective date of the transaction was February 14, 2013.
- The combined organization brings the capabilities and experience of over 50,000 employees to the marketplace.
- Even though Shaw will undergo many changes under our new company, the people remain and will provide the same level of service and dedication to clients as before.

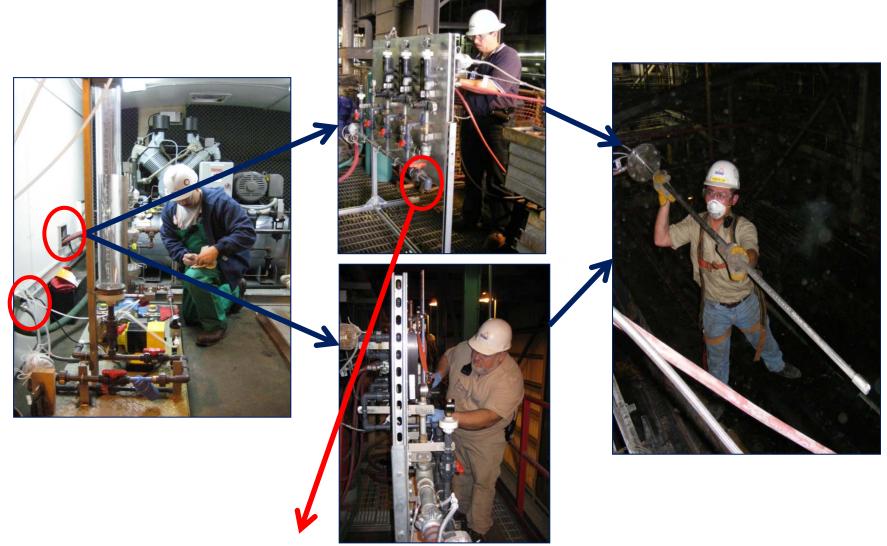
MATS Overview



	Total Filterable		
	Particulate	Hydrogen	
Subcategory	Matter (PM)	Chloride (HCl)	Mercury (Hg)
	0.030 lb/MMBtu	0.0020 lb/MMBtu	1.2 lb/TBtu
Existing coal-fired unit designed for coal > 8,300 Btu/Ib	(0.30 lb/MWh)	(0.020 lb/MWh)	(0.010 lb/GWh)
	0.030 lb/MMBtu	0.0020 lb/MMBtu	4.0 lb/TBtu
Existing coal-fired unit designed for coal < 8,300 Btu/Ib	(0.30 lb/MWh)	(0.020 lb/MWh)	(0.040 lb/GWh)

- Mercury and Air Toxics Standard (MATS) published on 2/16/2012, which became effective 60 days later. Compliance needs to be demonstrated by the 1st quarter of 2015
- Final PM limit for Filterable PM only (per EPA Method 5)
- Use of the alternate SO₂ limit is not allowed if EGU does not have some form of FGD system and SO₂ CEMS installed.
- Where alternate limits are designated with "or" in Table 2 Section 1 of MATS, these pollutants may be used in lieu of pollutants listed in same subsection (e.g. Total non-HAPs may be used in lieu of Filterable PM).
- The Hg limit is based on a 30-day boiler operations rolling average

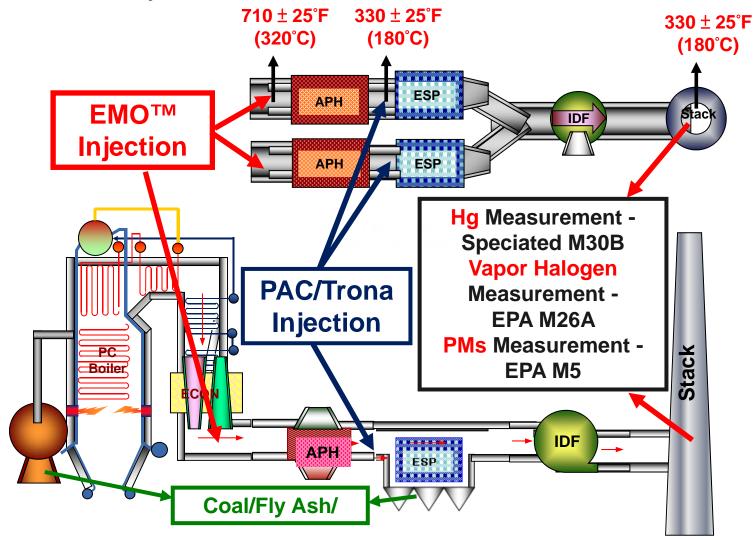
EMO® Injection General Arrangements


Injecting chemical: EMO[®] chemical additives

Mercury Absorption/Adsorption: in the existing PCD and scrubber

Injection location and temperature: Economizer outlet (> 650°F) or PCD outlet (320°F)

EMO[®] Injection General Arrangements

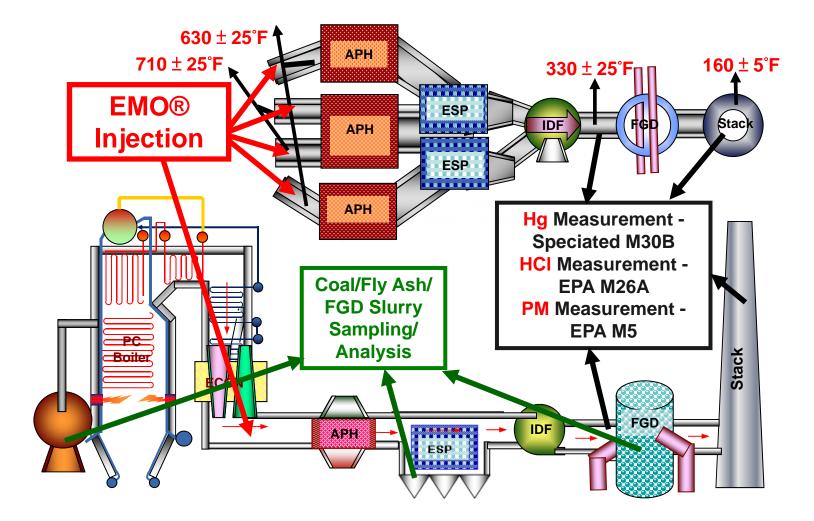


the X ppmv of EMO® injection rate was precisely determined by direct sample titration

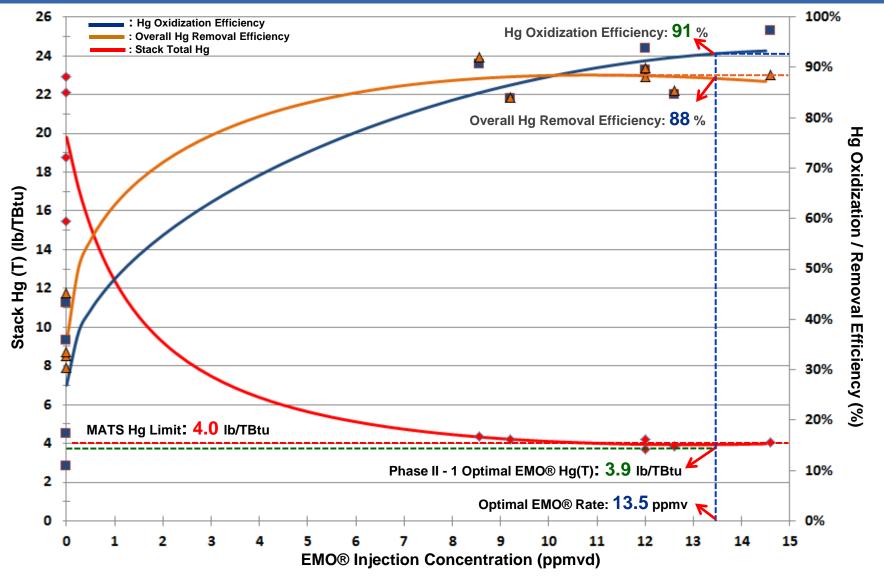
Reference Unit 1 Testing Arrangement

220 MW, ESP only, 100% PRB

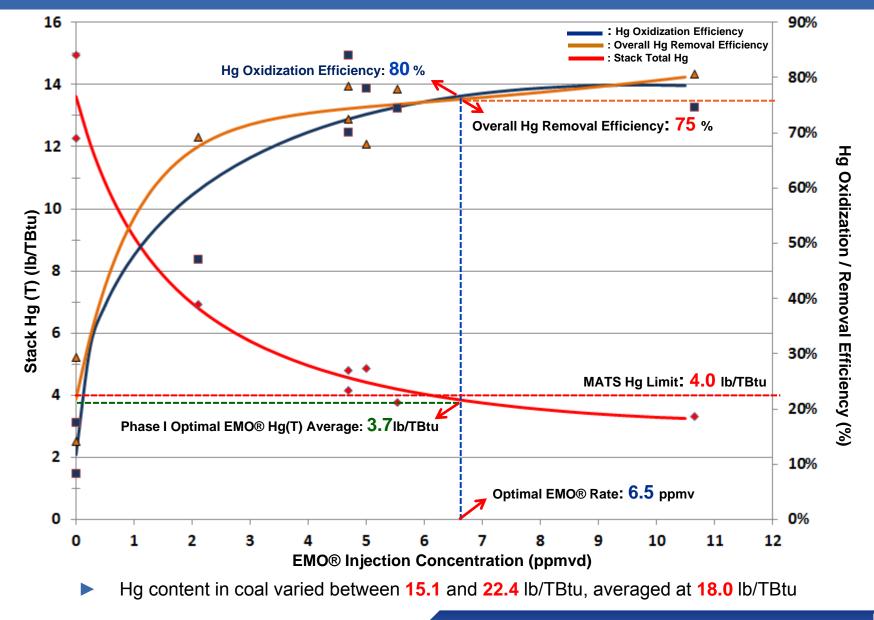
Reference Unit 1 Hg Data Overview


Date mm/dd/yy	Unit Load (MW)	Max. Hg From PRB (Ib/TBtu)	EMO [™] Injection Rate (ppmvd)	PAC Injection Rate Ib/mmacf	Trona Injection Rate (Ib/Hr)	Stack Hg (Ib/TBtu)	Stack Hg (Ib/GWh)	Hg Oxidization at Stack (%)	Overall Hg Removal (%)	NOx (Ib/MMBtu)	Opacity (%)
5/27/12	236		0.0	0	0	7.50	0.07317		3.8%	0.044	4.5
	235	7.8	0.0	0	0	7.90	0.07707	6.4%	-1.3%	0.042	4.5
6/7/12	234	7.8	4.4	0	0	1.49	0.01457	97.4%	80.9%	0.043	4.2
	237	7.8	6.5	0	0	1.16	0.01136	97.7%	85.1%	0.045	3.4
6/8/12	235	7.8	5.5	0	1200	3.66	0.03570	91.7%	53.1%	0.045	3.6
6/8/12	235	7.8	10.0	2	1200	0.60	0.00585	99.0%	92.3%	0.045	3.5

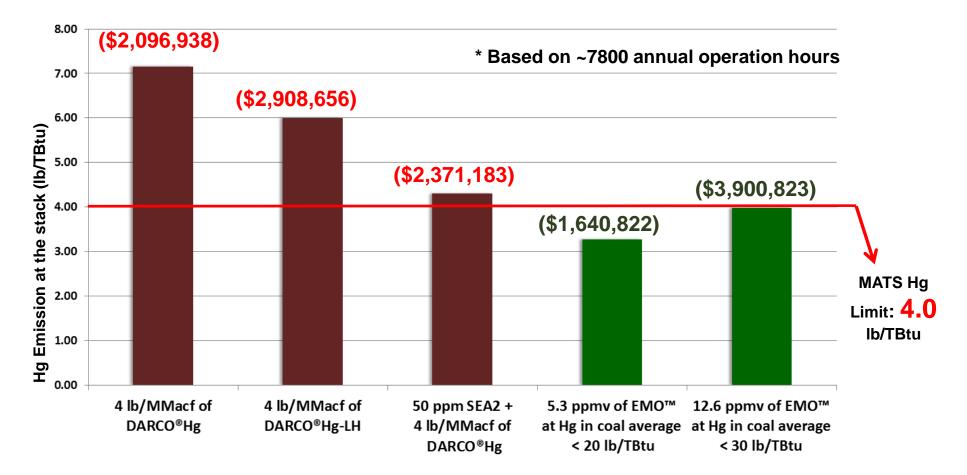
- Baseline Hg emission at the Stack, 7.73 lb/TBtu on average, with above 95% Hg (0)
- EMO was observed to produce above 96.5% Hg oxidization efficiency, improved from 5%
- EMO was observed to produce above 83.5% overall Hg removal efficiency
- Combined with Trona, EMO still produced Hg oxidization rat 91.7% Hg oxidization efficiency, overall Hg removal efficiency decreased down to 53.1%
- Combined with Trona/PAC, EMO produced Hg oxidization rat 99.0% Hg oxidization efficiency, overall Hg removal efficiency was determined at 92.3%


Reference Unit 2 Testing Arrangement

440 MW, ESP +FGD, 100% Lignite



EMO® Phase II - 1 Overview (5/22/2012 – 6/12/2012)

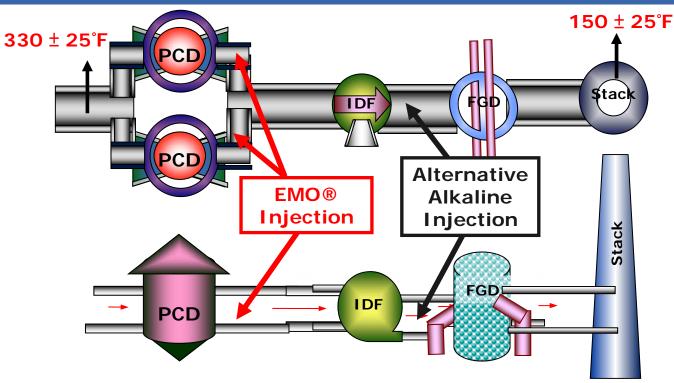

Hg content in coal varied between 26.6 and 54.1 lb/TBtu, averaged at 33.7 lb/TBtu, Phase 1: 18.0 lb/TBtu

EMO® Phase I Overview (11/14/2011-11/17/2011)

Reference Unit 3 Economics Analysis

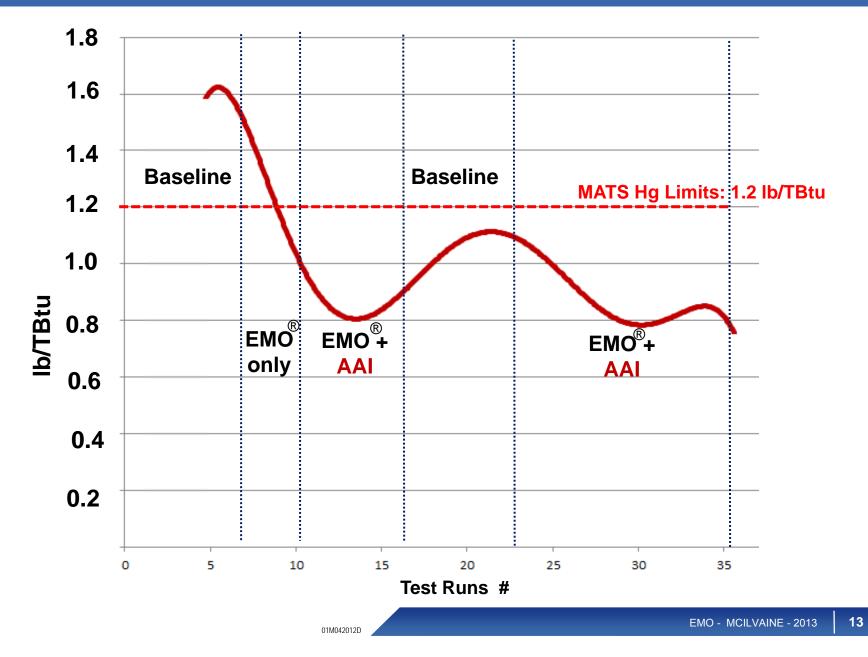
The cost estimates for the first 3 non-EMO[™] injection options were based on Hg Content in coal ~20 lb/TBtu. None of them demonstrated MATS compliance!

Stack Visible Blue Plum – SO3 Interferences



From various CB&I EMO field trial, SO3 has been observed to inhibit Hg oxidization Hg2+ adsorption across the ESP, and Hg2+ absorption across the FGD

Testing Summary – Reference Unit 4



- ~300 MW Gross, SCR + PCD + FGD, AAI was 100' downstream of the EMO®
- **Hg** in coal: **9.0** lb/TBtu, Sulfur in coal: **3.5**%, Stack SO₃ was visible at \sim 20 ppmv
- Baseline Hg stack Hg (T): ~1.7 lb/TBtu
- ▶ **5.0** ppmv of EMO® at PCD outlet, Stack Hg (T): ~1.1 lb/TBtu
- ▶ 2.5 of EMO® at the PCD outlet and AAI at the ID outlet Stack Hg (T): ~0.9 lb/TBtu

Potential SO3 Interferences – Reference Unit 4

Can Ca(Br)2 Produce the Same Results? Not Really

Sampling Date	Test Condition			CaBr2 Target	EMO Target	Hydrogen Bromide		Relative	Hg Oxidization	Stack Hg
		Start Time	End Time			M26A FGD inlet	M26A Stack	Deviation	Efficiency	Removal Efficiency
				ppm	ppmvd	ppmvd	ppmvd	%	%	%
7/12/2012	EMO - Baseline	9:00	10:00	0	0	0.18	0.10		17%	25%
7/12/2012	EMO - Baseline	11:15	12:15	0	0	0.09	0.10		6%	21%
7/12/2012	EMO Parametric	17:00	18:00	0	2.9	4.48	0.10	21%	54%	57%
7/13/2012	EMO Parametric	10:40	11:40	0	5.5	5.78	0.10	3%	71%	60%
7/16/2012	Trona - Baseline	8:00	9:00	260	0	3.27	0.10		61%	51%
7/16/2012	Trona - Baseline	9:30	10:30	260	0	3.47	0.10		61%	50%

✓ Blending 260 ppm of Ca(Br)₂ blending in coal requires 57 lb/hr Ca(Br)₂ (110 lb/hr of 52% Ca(Br)₂ solution). This equates to 0.28 lb-mol of Ca(Br)₂, which generates 0.56 lb-mol available Br material in flue gas in the form of Br2 or HBr.

✓ For 3.3 ppmv EMO[™] injection at 195 MW gross generation, it would require 23.1 lb/hr of HBr injection (48 lb/hr of 48% HBr solution). This equates to 0.29 lb-mol of HBr, which generates 0.29 lb-mol available Br in flue gas.

✓ Hence applying Ca(Br)² could put approximately 50% of the Br material to waste
(0.29 lb-mol vs. 0.56 lb-mol), *Excessive Stack Br2 Emission – Title 3 HAPS* ✓ the difference in annual cost is approximately \$120K for a 200 MW unit

✓ HBr is a more effective material promoting Hg oxidization

- EMO® Injection successfully demonstrated Hg compliance to MATS >90% plus stack Hg oxidization efficiency), for Lignite, Bituminous, & Sub-Bituminous
- EMO® has been repeatedly observed to Improve Hg re-emission across the scrubber with a means of precise control
- The flue gas SO3 emission was observed to inhibit Hg oxidization and oxidized Hg capture across the scrubber - Hydrated lime injection mitigated SO3 interference improving Hg oxidation and removal
- EMO® injection does not create impact for the fly ash beneficial use/disposal (No metal leaching issues observed)
- EMO® was proven to be ~70% more cost-effective than PAC injection and ~50% more cost-effective than other fuel halogen additives, such as Ca(Br2)

CONTACT

Bobby I.T. Chen *Client Program Manager* +1 865.670.2687 – Direct +1 865.360.2823 – Cell bobby.chen@cbi.com Randall P. Moore Business Line Manager +1 865.694.7455 – Direct +1 865.604.3945 – Cell randall.moore@cbi.com