SCR/CO/VOC CONTROL For the McIlvaine Company

A short overview of Emission Control Systems for Gas Tubines

Bob McGinty, Sr. Manager, Business Development

This document and any attachments contain proprietary information and are the sole and exclusive property of Mitsubishi Power Systems Americas, Inc., "MPSA". Your receipt of this information is an acknowledgement of a confidential relationship between you and MPSA. This information is to be used solely by you for the purpose for which it is furnished. Neither these documents, nor any information obtained there from is to be reproduced, transmitted, disclosed, discussed with any third party, or used otherwise, in whole or in part, without first receiving the express written authorization of MPSA.

PRINCIPLE OF SCR REACTION

(DENITRIFICATION PROCESS)

SCR FOR SIMPLE CYCLE GT (TYPICAL SCOPE)

Design Considerations:

- Seismic and Wind Loads
- > Thermal Growth
- > Catalyst Support & Sealing
- > Accessibility (Internal and external components)
- > Thermal Insulation & Liner System
- > Prefabrication Modular Panel Semi Modular
- > Constructability TIME & MONEY
- > Operation & Maintenance

PLANT A (MODULAR CONSTRUCTION)

PLANT B (PANEL CONSTRUCTION)

PLANT C (SEMI-MODULAR CONSTRUCTION)

KEY CONSIDERATIONS FOR GAS TURBINES SCR

Service life – Hours & Years (customer requirement)	Ammonia slip
Exhaust gas temperature	Catalyst temperature
Turbine exhaust NO _X , CO, VOC levels	Reactor duct configuration
Required NO _X CO, VOC removal & stack exit	Flue gas flow/temperature distribution
Pressure loss allowance	SO2 to SO3 Conversion
Volumetric flow rate	NH_3/NO_X distribution

CATALYST SELECTION: TEMPERATURE

100% NO_x Removal Efficiency 90% Zero V₂O₅ Low V205 High V₂O₅ 80% NO = 50 ppmvd $NH_3/NO = 1.25$ $O_2 = 15.0\%$ $H_2O = 7.0\%$ 70% 500 700 800 600 900 1000 1100 Temperature [°F]

- High temp catalyst: 450F ~ 1,100F
- Medium temp catalyst:
 450F ~ 900F
- Medium-low temp catalyst: 450F ~ <u>850F</u>
 - Standard catalyst:

450F ~ 800F

At higher temperature, reduce V:W ratio for

- Stronger NH3 adsorption
- Lower NH3 decomp rate
- Higher DeNOx rate
- Lower sintering rate

Large operating temperature range (350 - 1100°F)

CATALYST MODULES & TEST COUPONS/BLOCKS

CO & VOC CATALYST

- Platinum or other PGM promotes CO to CO₂ oxidation.
- Brazed joint corrugated metallic foils, stacked corrugated foil or ceramic cells to provide high surface area per cu.ft. of catalyst
- Oxidation occurs on "surface" of catalyst.
- Pressure drop is directly dependent on catalyst depth and compactness
 MITSUBISHI POWER SYSTEMS

CATALYST POISONING & DEGRADATION MECHANISM

Degradation Source	<u>Mechanism</u>
High Temperature > 930F	Decreases available surface area by thermal sintering of ceramic material
Fine particulate	Reduces available surface area by masking surface and preventing diffusion into pre structure
Ammonia-sulfur compounds	Plugs pores and prevents diffusion
Alkaline metals, Na, K	Ion exchange with active sites
Alkaline earth metals, Ca, Mg	Typically in form of sulfates, bond with acid sites reducing the ability of catalyst to absorb NH_3 I.e. formation of CaSO ₄
Halogen	May react with and volatilize active metal sites
Arsenic	Gaseous arsenic diffuses into catalyst and covers active sites, preventing further reaction
V, Pt, Cr and Family	Deposit onto catalyst, increasing NH ₃ to NO and/or SO_2 to SO_3

FLUE GAS PATH MANAGEMENT (NH₃ MIXING - COLD FLOW MODEL)

Simple Cycle Physical 1/12th Scale Model

SCR FOR SIMPLE CYCLE GT NRG MARSH LANDING

Project Features

- Frame SCGT x 4 units
- Max operating temp: ~1150F
- Tempering Air
- Outlet NOx: 2.5 ppmvd
- Completed April 2013

- MPSA has established SCR design considerations for gas turbine fired applications and can ensure long-term and continuous system operation on gas or liquid fuels.
- Mitsubishi has supplied SCR systems for combined cycle and simple cycle gas turbines globally, and is a "Proven" technology provider with over 600 SCR systems worldwide.
- MPSA has a team of qualified experts in Newport Beach and Lake Mary Office with access to more experts at MHI Nagasaki and MHI R&D. We can offer support with feasibility studies, with project execution, and with long term maintenance of your valuable investment.

