

An Update on the FMC NOx Abatement Technology Using Hydrogen Peroxide

Robert (Bob) Crynack FMC Corporation

McIlvaine Hot Topic Hour – April 7, 2011 New FGD and DeNOx Approaches

Agenda

- Introduction
- Hydrogen Peroxide (H₂O₂)
- Status of technology
- Full scale demonstration equipment
 Path Forward

Introduction

 Regulatory requirements are creating a need for coal fired boilers to further reduce NO_x emissions

- A technology void exists for units seeking NO_x reductions of 40-80% with minimal capital investment
- FMC is developing a cost effective NO_x control technology that also reduces Hg

NO_X Control Technologies

FMC CONFIDENTIAL

-FMC

FMC NO_x Technology

- NASA Kennedy Space Center (KSC) developed an air pollution control technology with University of Central Florida
- FMC Corporation is the exclusive licensee for US Patent # 6,676,912
- Use of hydrogen peroxide (H₂O₂) to oxidize NO and Hg° to forms for capture in downstream equipment

Hydrogen Peroxide (H₂O₂)

- Strong, environmentally friendly oxidizing agent
- Major end uses: pulp & paper, chemicals, food, hair treatment, antiseptic, and electronics

Product provided in various grades and concentrations

Hydrogen Peroxide Chemistry

(1) Decomposition Reaction

 $H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2 \uparrow$

(2) Catalytic activation $H_2O_2 \rightarrow 2 OH^{\circ} \text{ or } H_2O_2 \rightarrow OOH^{\circ} + H$

(3) Simplified radical reactions with NOx in the flue gas

 $NO + OOH \rightarrow NO_2 + OH \rightarrow$

 $NO_2 + OH^- \rightarrow HNO_3$

 $NO + OH' \rightarrow HNO_2$

Nitrogen Species Capture Options

- Wet lime/limestone/sodium scrubbers
- Circulated Fluidized Bed (CFB) scrubbers
- Spray dryer absorbers (SDA)
- Other dry/semi-dry scrubbers

Dry injection (lime/trona) with ESP or FF

Summary of Results

- Oxidation of NO up to 80% has been achieved in laboratory, pilot, and full scale demonstrations
- Key to technology is capture of nitrogen species in downstream FGD equipment
- Further evaluation in on-going

FMC NOx Capture Program

- URS project focused on NO₂/NO₃ and Hg⁺² capture (wet chemistry)
- EERC project focused on NO₂/NO₃ and Hg⁺² capture (dry chemistry)
- Working to identify additional trial sites, particularly to demonstrate dry and semi-dry capture

FMC Trial Scope

- Peroxide storage tank & containment
- Chemical delivery system
 - Pumps
 - Valves
 - Controllers
 - Interconnecting piping
- Spray lances and nozzles
- Contracted testing services

Storage Tank

Injection Skid and Control

Spray Lances

Injection Ports

Summary

- Significant progress has been made towards commercialization of the technology
- Final technical hurdle is NOx capture. Getting results from R+D programs with final results expected by end of Q2 2011
- Optimistic that technology can fill the void for units seeking 40-80% NO_x reduction with minimal capital investment

Applications

- Stand alone system
- In conjunction with
 - Low NOx burners (LNB)
 - SNCR
 - Over-fired air systems
 - SCR
 - FMC has a patent application on destruction of NH3 using hydrogen peroxide

Thank you !

Questions ?

Bob Crynack robert.crynack@fmc.com 412-551-0925

FMC CONFIDENTIAL