

Simple Cycle SCR Designs

Presentation for

McIlvaine Hot Topic Hour

Air Pollution Control for

Gas Turbines

September 19, 2013

Bill Gretta, ENERActive Solutions, LLC Asbury Park, NJ

<u>Outline</u>

- □ Simple Cycle SCR System Overview
- □ SCR Design Conditions & Specifications
- **Tempering Air**
- □ Flow Modeling
- □ AIG Design & Ammonia Distribution
- □ Bypass and Structural Design

Simple Cycle SCR Systems Overview

- Simple Cycle SCR pose more design challenges than combined cycle units
- Common Misconception...Simple Cycle SCR is a Commodity..
 - Add-on to a GT package to meet emissions requirements
- □ When treated as a commodity, details can and have been overlooked
- Performance problems can result in \$millions in lost generation (down time or de-rating), testing, investigations and repairs to get into compliance
- Proper specification and design is key to successful operation... avoid "commoditization"

Simple Cycle SCR Design - Typical

Simple Cycle SCR Design Conditions

□ Several Factors Dictate Design of SCR

- Gas Flow...depends on size of engine
- Engine exhaust NOx
- Stack NOx (DeNOx) and NH₃ Slip...Local permit requirements
- Flue gas Temperature
- Footprint Available
 - Back Pressure

Simple Cycle SCR Design Conditions

Typical Values – GE LM6000

Parameter	Units	Value
Gas Flow	lb/hr	1,100,100
SCR Inlet NOx	ppm	25 (Natural Gas)*
SCR Outlet NOx	ppm	<2.5
Temperature	°F	750-800
Ammonia Slip	ppm	<5

* Engine NOx can be adjusted by water injection

Simple Cycle SCR – Water Injection for NOx Control

- □ Water Injection used to reduce engine NOx to 25 ppm
- ❑ GT Manufacturer sets limit on how much water can be added...~20 ppm may be lower limit
 - □ SCR Duty cannot be dramatically reduced
- Higher water injection will increase CO
- □ Balancing act between CO and NOx…and ammonia slip

Simple Cycle SCR – Maintaining Performance

Pollutant	Maintainability
NOx	Outlet NOx usually controlled below 2.5ppm
NH ₃ Slip	Depending on monitoring, can be very difficult to maintain 5 ppm if system problems exist
CO	Can be difficult to maintain if engine NOx is reduced too low with water injection (i.e. to maintain NH ₃ slip)

Simple Cycle SCR – Design Specs

- Give yourself some breathing room...
- If NOx permit limit is 2.5 ppm, set design point for SCR to something lower
 - The operating setpoint will be something lower than 2.5 ppm to avoid exceedances.
 - If inlet NOx is 25 ppm, then DeNOx is above 90%...ammonia slip could be an issue from the start.
- Same for CO....if permit is 5 ppm, then set design to something lower
- ❑ Operators do NOT like to push the envelope!

Simple Cycle SCR – Design Specs

	Units	Design	Actual Operation
SCR Inlet NOx	ppm	25	25
SCR Outlet NOx	ppm	2.5	2.2
DeNOx	%	90	91.2
Ammonia Slip	ppm	<5	<5

Simple Cycle SCR – Ammonia Slip Monitoring

- Depending on the state/permit, ammonia slip may or may not be monitored
- When it's not monitored, it's usually measured periodically by CTM-027 or FTIR
- ☐ If it is monitored, control of NOx and CO is critical to stay in NH₃ slip compliance

Simple Cycle SCR – Tempering Air

- Many systems utilize tempering air at the engine exhaust to reduce the flue gas temperature.
 - Done primarily for SCR to keep gas temperature < 800F
- Although in theory the systems work, the implementation, performance issues and O&M can be significant
 - Temperature Distribution
 - Parasitic loads for TA fans
 - TA Fan maintenance...more moving parts
 - Cooling Air Lance design...subject to high turbulence at GT exhaust

The Need for Flow Modeling...

- Size of system should not dictate whether a system is modeled
 - Flow modeling should ALWAYS be done. "Duplicates" are not always the case
- Modeling should be done early, by OEM or catalyst supplier as required
- Detailed modeling can save time and \$\$ in the long run
- Physical or CFD are proven methods, but CFD has advantages...
 - Better simulation of GT exhaust
 - Thermal mixing

Simple Cycle SCR – Fluid Flow Design Considerations

No Boiler Tubes!!

- Many systems with steep angles on Combined Cycle flues do not work in Simple Cycle applications
- High swirl and turbulence from GT...Single perforated plate may not be enough to improve distribution
- Burdens CO catalyst
 - CO Catalyst performance can be hindered
- Poor flow distribution ultimately results in poor ammonia distribution and degraded SCR performance

Simple Cycle SCR – Ammonia Mixing

- AIG typically located directly downstream from CO Catalyst
- CO Catalyst will significantly reduce turbulence intensity
 - Metallic catalyst with 200 cells per square inch
- Even thought there may be plenty of injection points, there ammonia and flue gas blending is weak
 - AIG will need a mixing "boost"

Simple Cycle SCR – AIG Design

- AIG should be designed with ability to tune as much as possible!
- Systems designed
 with no tuning
 capability have very
 limited flexibility
- Aspect Ratio comes into play

Simple Cycle SCR – SCR Catalyst Design

- Plate, Honeycomb and Corrugated Catalyst all used successfully in simple cycle applications
- When properly specified, operated and maintained, catalyst should far exceed guarantee life
 - Less deactivation risks in natural gas applications
- Performance problems usually due to system issues..
 - Poor NH₃/NOx Distribution
 - Poor Velocity Distribution
 - Bypass

Simple Cycle SCR – SCR Structural Design

- Stainless Steel components...higher expansion coefficient than carbon steel
- System must be designed to accommodate growth vertically and horizontally
- Vertical growth could be 2-3"
- Sealing is critical to avoid bypass

Elevation

Simple Cycle SCR – Effect of Improved Seals

Configuration	Ammonia Slip, ppmvd @ 15% O ₂
Original Sealing System	6.8
With ENERActive Modified Sealing/Reinforcement System	2.0

Simple Cycle SCR – Additional Structural Considerations

- □ Insulation Can release if not properly addressed
 - Liner gaps
 - Access Doors
- □ Catalyst Support Structure
 - Poor design can affect integrity of catalyst modules
 - Excessive column deflections can have significant effect on bypass
- Column Deflection
 - SCR Support Columns to be properly designed for pressure, seismic, etc.
- □ Structural Integrity near GT Exhaust
 - Any devices in this region must be robust...turbulence levels are very high

Simple Cycle SCR Design - Summary

- Proper Design Specifications a Must
- □ Avoid Tempering Air if possible
- □ Flow Modeling a Must
- AIG and Ammonia Mixing are critical to performance
- Structural Design can impact
 Performance
- □ SCR not a Commodity!

Energy Solutions...Efficient Results