

"Significant Cost Savings Obtained Using Advanced Membrane Systems for Cooling Tower Water Treatment and in ZLD plants"

> Bernhard Doll Pall GmbH

Webcast

December 2012

This presentation is the property of Pall Corporation. No portion of this presentation may be copied, published, performed, or redistributed without the express written consent of a Pall Corporate officer.

© 2012 Pall Corporation.

- Case studies in CT water applications, considering
- Water quality improvement
- Water footprint improvement, waste minimisation
- Economic Improvement
- Sustainable, reliable operation
- Conclusions

Case: Cooling Tower (Indiantown, USA) Typical Analysis of Different Makeup Waters used

Parameter	Units	Blend of	Waste	Surface Water	
		Well Waters	Water		
				Taylor Creek	
Turbidity	NTU	3-10	N.R	3-30	
Conductivity	uS/cm	6200	960	590	
Iron	mg/l	0.13	0.05	0.56	
Total Organic Carbon	mg/l			31	
Ca Hardness	mg/l	440	260	98	
Mg Hardness	mg/l	540	14	48	
Sodium	mg/l	850	76	55	
Aluminum	mg/l	<0.1		0.21	
Silica	mg/l	15.0	21.0	9.7	
Sulfates	mg/l	300	31	58	
Chlorides	mg/l	2000	97	110	

Original Flow Scheme for Zero Liquid Discharge

Pall Pilot System: Confirmed Performance Under Varying Conditions in CTBD

Indiantown Cooling Tower Water Samples

MF-Filtrate: SDI 0.3 – 1.9 achieved

Return on Investment Calculations

SAVINGS to the Power Plant

- Power (evaporation) = €317,600/year
- Elimination of maintenance/refurbishing/retubing & chemical cost on evaporators
 = €625,600/year

Investment costs

- Cost of MF/RO System: €1,240,000
- Cost of Installation: €564,000 (estimated).
- Annual Power, Chemicals and Consumables, cost to operate the MF/RO Plant : €162,400

ROI

Return on Investment = 2.4 years

Evaporator Replaced by Membrane System (MF-RO)

MF and RO Systems Installed at Indiantown ZLD Plant Replacement of Brine Concentrators

Pall Aria[™] MF System

Inlet Flow : 140 m³/hr Number of Modules: 56 TDS: 97% removal

Pall Aria Spiral RO System

2 Trains RO

Case Study: Cooling Tower Blowdown Treatment Replacing Media Filters

Power Plant at TID Walnut

Case Study: Cooling Tower Blowdown Treatment Replacing Media Filters

Results/Achievements:

- Unit running smoothly for more than a year with MF
- Turbidity < 0.1 NTU</p>
- SDI improved from SDI₅ of 20 to SDI₁₅ ~ 3
- RO run-length increased from 2 to 21 days
- Water footprint improved
- Coagulants eliminated
- Plant reliability and availability up

Pall Aria MF-System (136 m3/h; 600 gpm)

Case Study: CTBD / Recycle/ makeup water treatment Replacing MMF at EnCana Cavalier

Used for a portion of raw water treatment and recycled water

Result: Reduction of TSS on the CT, and increased efficiency of CW-chemistry

Case Study: Water Treatment in Cooling Tower Area, Recirculation Water in Steel Mill, Asia

Pall Aria MF system installed in kidney loop of recirculating water:

- NTU reduced heavily in the loop; TSS from 30 to <1 mg/l (colloids, precipitates, corrosion products)
- Bacteria reduced (from 10 cfu to 1-2)
- Reduced maintenance, waste, chemicals, down-time, labour, water balance improved

Pall system in slipstream

of recirculation(5%; 80 m³/h)

deposits

Minimization of Brine Streams from SWRO Plants

- Pall Disc TubeTM RO membrane alternative configuration
- Operating up to 160 bar (140.000 TDS)
- Technology for waste minimization upstream ZLD plants

Pall Corporation

PAL

Pall Aria Mobile Units for Rental or Examining Performance Improvement around Cooling Towers

