

▲ ALBEMARLE® | Environmental Division

Innovative, One-Step Production of Albemarle's Concrete-FriendlyTM **Activated Carbon**

August 2, 2012

McIlvaine Company Hot Topic Hour Mercury Control and Removal Status and cost

Behrooz Ghorishi (R&D Director); behrooz.ghorishi@albemarle.com

Hg Control with Fly Ash Preservation

- Class C coal fly ash ideal for concrete use (Pozzolanic)
- II.5 million tons used in concrete market (2008)
- Economic benefit
 - ✓ sale of fly ash, partially replacing costly cement
- Environmental benefit:
 - ✓ Reduced land disposal, reduced virgin resource use, reduce GHG
- Activated carbon Hg control increases fly ash carbon
- Air-entraining admixtures (AEA): create concrete air bubbles; improve freeze-thaw capabilities
- Carbon adsorbs AEA
- Need concrete compatible carbon or post treatment of carbon/fly ash

Fly Ash Preservation Post-Treatment Techniques

Post-treatment of fly ash/carbon with ozone

- O₃ passivizes the carbon by creating O₂ surface groups; suppressing AEA adsorption; treats LOI as well
- Requires an additional, costly step of treating large amounts of fly ash
- Hurt et al. (2000); Chen et al. (2003)
- Can be applied to only activated carbon (Nelson, 2003)

Addition of a "sacrificial agent" to concrete mix

• Carbon adsorbs the agent and not AEA thru a change in carbon surface: Ethyleneglycophenylether (EGPE); Jolicoeur et al. (2009); costly chemical

Carbon burnout in fly ash/carbon mixture

- Fluidized bed reactor reaching 860 °F; treats LOI as well (PMI Ash Technologies; see the references)
- Energy consumption is high

Albemarle's one-step production of Concrete-FriendlyTM Activated Carbon

- Development of an Innovative Metric to measure concrete friendliness (patent-pending)
- Traditional foam index method: titrate an AEA into fly ash/AC to obtain stable foam
 - · Crude/inconsistent method, depends on type of AEA used and analyst judgment
- Acid Blue 80 (AB80) index replacing foam index to determine concrete friendliness of activated carbon (an spectroscopic technique)
- AB80: chemical structure/molecular size similar to AEA
- ABI results very consistent for various carbons under wide range of conditions; foam index is not
- Discovered a specific range of ABI that results in minimal adsorption of AEA; thus Concrete-Friendliness

AB80

Albemarle's one-step production of Concrete FriendlyTM Activated Carbon (cont'd)

How to achieve the desired ABI

- Design of pore size distribution
- Selection of appropriate carbon substrates
- Influence carbon surface properties
- Kiln activation of Concrete-FriendlyTM AC (C-PACTM)
- Accurate control of time-temperature to impart desired micro- and meso-porosity
- Control of activation media to generate desired oxygenated surface functional groups
- Patent Pending (Zhang et al., 2010)
- Proper design of activation results in the one-step production of C-PACTM
- No affinity for AEA
- Brominated, thus a very high affinity for Hg

C-PAC Hg removal performance

Testing at more than 14 full-scale power plants with different configurations; very high Hg removal

Nelson et al., 2006; Zhang et al., 2010; Lipscomb, 2009; Nelson and Landreth, 2007,
Zhou et al., 2007

Midwest Generation's Crawford station; 234MWe, Subbit., C-ESP; Nelson and Landreth, 2007

High comprehensive strength

<u>Unconfined compressive strength (UCS)</u>: the capacity of the concrete to withstand axially directed compressive forces

Air Content of Concrete

Concrete with baseline fly ash

With C-PAC

All foam indices were within specifications

Cement Plant Application

Successful field testing of C-PAC at a number of cement plants (data proprietary of Albemarle and the plants)

Conclusions

- Determined the range of ABI that results in concrete compatibility (no AEA adsorption)
- Design of a one-step activation process to achieve the desired ABI
- Successful production of C-PAC; high Hg removal in field trials and long-term commercial applications
- No adverse effect on the quality of concrete

References

Hurt, R.; Suuberg, E.; Gao, Y-M; Burnett, A. Apparatus and Method for Deactivating Carbon in Fly Ash. US Patent # 6,136,089, October 2000

Chen, X.; Farber, M.; Gao, Y.; Kulaots, I.; Suuberg, E.; Hurt, R.H. Mechanisms of surfactant adsorption on non-polar, air-oxidized and ozone-treated carbon surfaces. Carbon 2003, 41, 1489-1500

Nelson, S.G. Method and Compositions to Sequester Combustion Gas Mercury in Fly Ash and Concrete. US Patent Application US 2003/0206843 A1 November 2003

Jolicoeur, C.; To, T.C.; Benoit, E.; Hill, R.; Zhang, Z.; Page, M. Fly Ash-Carbon Effects on Concrete Air Entrainment: Fundamental Studies on their Origin and Chemical Mitigation. In Proceedings of 2009 World of Coal Ash (WOCA) Conference, May 4-7, 2009, Lexington, KY.

PMI Ash Technologies Inc. http://www.pmiash.com/docs/ACAA01paper.pdf

Zhang, Y.; Zhou, Q.; Nelson, S.G. Compositions and Methods to Sequester Flue Gas Mercury in Concrete. US 2010/021550 A1; August 26, 2010.

Sid Nelson Jr., Qunhui Zhou, et al, Progress in Scaling Up C-PAC™ Concrete-Friendly™ Mercury Sorbents, Proceedings of Mega Symposium, Washington DC, 2006.

Yinzhi Zhang, Sid Nelson, Jr., et al., An Update on Carbon-based Concrete-friendly Mercury Sorbent, Proceedings of World Carbon Conference, Clemson, 2010.

Daryl Lipscomb, An Update on Concrete-Friendly Mercury Sorbent Performance, Proceedings of Air Quality VII Conference, 2009.

Sid Nelson, Ron Landreth, et al, Full-scale month-long testing of Concrete-Friendly sorbents at Midwest Generation's Crawford Station, Proceedings of Electric Utility Environmental Conference, Tucson, 2007.

Qunhui Zhou, Sid Nelson Jr., et al., Concretes and Fly Ashes from a Full-Scale Concrete-Friendly™ C-PAC™ Mercury Control Trial, Proceedings of World of Coal Ash Conference, 2007