Analytical Management of SCR Catalyst Lifetimes and Multipollutant Performance

Stephen Niksa & Balaji Krishnakumar Niksa Energy Associates LLC Belmont, CA Corey Tyree & Farrokh Ghoreishi Southern Company Services Birmingham, AL

Niksa Energy Associates LLC

1745 Terrace Drive, Belmont, CA 94002 Phone: (650) 654 3182 Fax: (650) 654 3179 e-mail: neasteve@gmail.com

Utility SCRs Contain Diverse Layers With Much Different Ages

	N81	- (*	$f_{\mathbf{x}}$																	`
	А	В	С	D	E	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R	S	T
45	SCB Operating Conditions																			
47 SCR Inlet Conditions																				
48		NH ₂ /NO		Molar Ratio	n															
49			Inlet NO		nomy or	5	nnmy dry													
50			Inlet SO ₂		nomy or		ppmv dry													
51			Inlot Ha ²⁺		% Total Ho		ppint dry													
52		Gross Size		70 10101119	,															
53		0.000 012	GHSV		1/hr@32F															
54			No. Layers	÷	5															
55		Calculatio	n Sequence		Detailed ca	Detailed catalyst properties required for Design Simulations and only SCR shape specs required for a Global Reactivity Analysis.														
56		Design Simu		nulation		Y or N?		Global Rea	ctivity Analy	/sis		Y or N?								
57		Layer Sp	ecifications:																	
58			For Layer	1:											-					
59			Length		m				Wall	Thickness		mm			⊢ _{Hg}		Adjustmen	t to Hg oxida	ation rate	
60		T _N			°C					V_2O_5		wt. %			F _{NO}		Adjustmen	t to NO redu	ction rate	
61			Tout		°C					WO ₃		wt. %			F _{HCI}		Adjustmen	t to HCI ads	orption rate	
62		Monolith			Honeycom	Honeycomb or Plate ?				MoO ₃		wt. %	F _{NH3}				Adjustment to NH ₃ adsorption rate			
63			Pitch		mm					TiO ₂		wt. %		Conv.	Tolerance					
64		Shape		Circular, Square, Rectan		tang, or Tri	ang Macrod _{Pi}		Macro d _{Pore}		Angstroms									
65		Make			COR, ARG, KWH, HA		AT, or HIT		MacroEPS			Fractional I	MacroVoidag	е						
66		k _D /k ₀			Deactivatio	on Ratio				Micro d _{Pore}		Angstroms								
67								Micro EPS			Fractional MicroVoi)							
68									Default	Reactivity	N	Y or N?								
69											A-Fac	Ea								
70									Hg Oxid.	by Cl										
/1										by Br										
72										NU Red.										
73										HCLAde										
75										NH3 Ads										
76										HBr Ads.										
77									Conv.	Tolerances										
H + +	Full-Se	cale SCR	ab-Scale Catalyst	/ / Sheet	1 / 🞾 /															▶
Ready																		III III 130	% — · · · · · · · · · · · · · · · · · ·	+

- k_t is the reactivity at 16,000 h specified by the manufacturer.
- A value for ^IX_{NO,d} determines the rate constant for NO reduction in NEA's SCR Catalyst Model.
- Consider two deactivation scenarios: (I) Both NO reduction and Hg^0 oxidation are deactivated in direct proportion; and (2) Only NO reduction is directly deactivated.

- 16 full-scale SCRs.
- Wide ranges of fuel quality, HCl, T, and GHSV.
- Different vendors & monolith types.
- 2, 3, or 4 layers.
- Up to tens of thousands of operating hours per layer.
- Activity ratios from 0.4 to 0.99+.

$$^{SCR} X_{Hg^{0}} = 100 \frac{{}^{IN} C_{Hg^{0}} - {}^{OUT} C_{Hg^{0}}}{{}^{IN} C_{Hg^{0}}}$$

• Unaffected by variations in Hg²⁺ at the SCR inlet.

NH₃ Inhibition of Hg⁰ Oxidation Is Always Significant

- Early layers have highest NH₃ concentrations.
- Most Hg⁰ oxidizes on the trailing layers.

Catalyst Deactivation Enables Deeper NH₃ Penetration Into the Trailing Layers

 All deactivated catalysts met the NH₃ slip regulation in our simulations.

Substantially Less Hg⁰ Oxidation Even With Direct Deactivation of NO Reduction Only (Type II)

Substantial Variations in Hg⁰ Oxidation Among Different Units at the Same Site (Type I)

Deactivation Distorts the HCl Dependence

- *Get the expected saturation curve with fresh catalysts.*
- Huge reductions in the extents of Hg⁰ oxidation for deactivated layers.
- Number of layers must factor into any performance index.

Summary

- Each simulation took less than 5 s on an ordinary microprocessor.
- NEA's SCR Catalyst Model obtains converged solutions for any combination of catalyst properties among up to five layers in a commercial SCR.
- Manufacturer's deactivation histories and reported operating hours for each layer determine a diminished activity ratio, which specified a NO_X conversion across each layer that could be reproduced under two deactivation scenarios for Hg⁰ oxidation.
- Both types of deactivation slow the rate of NO reduction, which gives deeper NH₃ penetration into the monolith, which disrupts Hg⁰ conversion.
- Both types of deactivation completely disrupt the apparent Cl dependence, so that each SCR behaves as a distinctive reaction system.

This study was sponsored by Southern Company Services, Inc. and reflects their generous cooperation in providing detailed gas cleaning conditions for their SCR fleet.

Input Requirements

- The inlet gas concentrations of NO, HCl, HBr (= total Br addition) and SO_2 .
- The total Hg concentration, in $\mu g/dscm$, and the fraction of oxidized Hg at the SCR inlet, based on measured values.
- The molar NH_3/NO ratio, which equals the measured NO conversion efficiency.
- *The SCR temperature.*
- The gas hourly space velocity, GHSV, which is a nominal number of reactor volumes processed per hour, based on the flowrate at the SCR inlet.
- *The pitch and channel shape for both honeycomb and plate catalysts.*
- The mean sizes in the catalyst pore size distribution, and the associated void fractions in each size class.
- The catalyst manufacturer, to provide a basis for clarifying geometric specifications and for estimating rate parameters.
- *Catalyst age and manufacturer's activity history.*