“HOT TOPIC HOUR”
PRESENTATION
CO-FIRING BIOMASS IN
STOKER BOILERS

Arie Verloop, P.E.
John La Fond, P.E.
Jansen Combustion and Boiler Technologies, Inc.
Kirkland, Washington, USA
Presentation Outline

- JANSEN Background and Projects
- Biomass Combustion and Goals
- Biomass Combustion Problems and Challenges
- Phased Approach
- Modifying/Retrofitting Combustion Systems
- Benefits Synopsis
Jansen Background

Experience

- 36 Years of Boiler Experience ("Difficult Fuels")
- Forest Products, W-t-E, IPP’s
- Tested/Evaluated > 300 Boilers, Worldwide
- >100 Advanced Combustion Systems, Many Coal Co-Fired
- Superheater (Re-)Design/Replacement
- New Economizers for Increased Efficiency
Types of Projects

- Combustion System Upgrades
 - Bark/Wood/Biomass/Sludge/TDF Boilers
 - Chemical Recovery Boilers
 - RDF/MSW Boilers
 - Boilers often Co-Fired with Coal
- Boiler MACT Compliance
- Boiler Fuel Conversions
- New/Replacement Superheaters and Economizers
- Complete Boiler Upgrades
Introduction – What is Biomass?

- Various Types of Solid Waste Wood:
 - Bark, Hogged Fuel, Sawdust, Clippings, Chips, Pellets
 - Construction and Demolition (C&D) Material
 - Ground Pallets and Old Furniture
 - Agricultural Wastes from Harvesting/Processing
- Refuse Derived Fuel (RDF)
- Tire Derived Fuel (TDF)
- Waste Sludge from Water Treatment Plant
- Some say: “Any fuel that is not fossil fuel”
Introduction – Fuel & Air Supply
Introduction - Stoker Grates

- Pinhole
- Vibrating
- Traveling
- Reciprocating

Courtesy of Detroit Stoker Company
Combustion Goals

To Achieve Continuous and Reliable Operation, *Economically*

- Uninterrupted, Stable Operation
- Meet Regulatory Emissions Limits
- Optimize Fuel Economy
- Optimize Steam Conditions for Power Generation
- Minimize Erosion/Corrosion Factors

More Difficult to Achieve with Biomass
Combustion Problems

Symptoms Frequently Seen with Biomass Combustion

- High Carryover of Fly Ash; High Unburned Carbon
- Delayed Combustion, Flames “Licking” Superheater
- High Excess Air/Low Efficiency
- Puffing, Uncontrolled Combustion
- High CO and VOC Emissions
- Limited Waste Fuel Burning Rates
- Need for Fossil Fuel Co-firing (oil/gas/coal)
- Clinkering and Slagging
Poor Combustion Conditions

- High carryover of ash with high unburned carbon
- Elevated gas temperatures
- Delayed combustion
- Poor mixing air with fines and volatiles
- Ash and fines lifted off grate
- Piling of unburned fuel on grate
- High CO and VOC emissions
Good Combustion Conditions
Causes of Poor Combustion

- **Poor Mixing of Combustion Air with Fuel**
 - Time, Temperature, Turbulence
 - Volatiles, Fines Over Grate

- **High Undergrate Air (UGA) Flows**
 - Increases Airborne Material/Carryover
 - Higher Excess Air - Lower Efficiencies
Typical Project

Phased Approach

- Initial Feasibility Study
- Process Engineering Evaluation
- Definition of Conceptual Modifications
- Project Implementation
Engineering Evaluation

Key Design Factors for Biomass:

- Grate Size, Furnace Volume
- Fuel and Air Distribution
- Material and Heat Flows, Thermal Efficiency, and Fuel Economy
- Conduct CFD Modeling - Simulate Combustion
 - Analytical Tool to Characterize Performance
 - Evaluate Potential Modification Designs
- If Needed, Analyze Steam/Water-side Circulation
CFD Modeling Output

Temperature \(\text{O}_2 \) CO NO Particulate

Original OFA System

Upgraded OFA System

Temperature \(\text{O}_2 \) CO NO Particulate
Modifying Combustion Systems

Modification/Upgrade Concepts:

- More Uniform Fuel Distribution with Flexibility to Control Fuel Trajectory
- Limited UGA Quantities to Minimize Lift-off of Fine Fuel Particles Off the Grate
- Preheated Combustion Air, Particularly for High Moisture Content Fuel
- Effective OFA Delivery to Promote Mixing of Air with Volatiles and Fines Coming Off the Grate
Modifying Combustion Systems - Fuel Feeders
Modifying Combustion Systems - OFA Supply
Modifying Combustion Systems - Benefits

Benefits Experienced:

- Increase Biomass Capacity Significantly (5% - 40%)
- Reduce/Eliminate Fossil Fuel Usage
- Improve Emissions (CO, NO\textsubscript{x}, PM)
- Reduce Carryover, Erosion
- Reduce Unburned Carbon Losses (LOI)
- Increase Thermal Efficiency
Today’s Opportunities and Challenges - Fuel Based

New Types of Biomass Fuels

- C&D Wood, Sludge, TDF, OCC, Railroad Ties, Pallets, Sometimes RDF/MSW
- Deviations in Fuel Analysis (water, HHV, elemental)
- Trace Contaminants (chlorides, minerals, silica)
- May Affect Deposit Chemistry, Clinker Formation, Slagging, Accelerated Erosion/Corrosion
Questions?

arie.verloop@jansenboiler.com
(425) 952-2825

john.lafond@jansenboiler.com
(425) 952-2832

www.jansenboiler.com