

Human Health and Ecological Risks Associated with Surface Impoundments

Ari Lewis

Flyash Ponds and Power Plant Wastewater

Treatment Issues

McIlvaine Webinar May 4, 2012

Outline

- Brief summary of EPA's risk assessment (RA): Human health and ecological
- Use of risk results in the Regulatory Impact Analysis (RIA) and implications for coal combustion residue (CCR) disposal regulation
- Case studies
- Toxicological and regulatory updates to some of the constituents in CCRs and implications for CCR RAs

2010 HHRA of Coal Combustion Residues (CCRs)

- Update of US EPA RA conducted in 2010 in support of the regulatory determination
 - > Aim was to characterize industry as a whole
 - Determine whether regulation as hazardous waste is warranted

EPA Risk Assessment – Human Health

- "More typical" waste management scenarios (50th percentile)
 - > Landfills Arsenic
 - > Surface impoundments Arsenic and cobalt
 - Risks similar to or less than those associated with background exposure to arsenic
- More extreme management scenarios (90th percentile)
 - > Landfill storage still poses minimal risk, but some exceedances
 - Arsenic, antimony, molybdenum, thallium
 - Arsenic risks still similar to background exposures
 - > Surface impoundments associated with several risk exceedances
 - Arsenic, cobalt, boron, molybdenum, nitrate, selenium, cadmium
 - Arsenic and cobalt key risk drivers

US EPA 2010 CCR RA – Results

90 th Percentile		
Landfills		
Arsenic (III)	2 x 10 ⁻⁵ (cancer) (Unlined, co-disposed CCR and coal refuse)	
Arsenic (V)	5 x 10 ⁻⁴ (cancer) (Unlined, co-disposed CCR and coal refuse)	
Antimony, molybdenum, thallium also slightly above risk targets at 90 th percentile level		
Surface Impoundments		
Arsenic (III)	2 x 10 ⁻² (cancer) (Unlined, co-disposed CCR and coal refuse)	
Arsenic (V)	2 x 10 ⁻² (cancer) (Unlined, co-disposed CCR and coal refuse)	
Cobalt	500 (non-cancer) (Unlined, co-disposed CCR and coal refuse)	
Boron, molybdenum,	nitrate, selenium, and cadmium also above risk targets at 90 th percentile level	

EPA Risk Assessment – Ecological

- "More typical" waste management scenarios (50th percentile)
 - > Aquatic
 - Landfills No exceedances
 - Surface impoundments Boron
 - > Sediment
 - Landfills No exceedances
 - Surface impoundments No exceedances
- More extreme management scenarios (90th percentile)
 - > Aquatic
 - Landfills Boron, lead Other minor exceedances
 - Surface impoundments Boron, lead, arsenic, selenium, cobalt
 - > Sediment
 - Lead, arsenic, cadmium
 - Lead, arsenic, cadmium (but much higher risks)

US EPA 2010 CCR RA – Uncertainties

- In many cases, conservative approaches that tend to overestimate rather than underestimate risk were used
- Key uncertainties
 - > Use of a 10,000-year modeling period (complete leaching, long timeframe)
 - > Well locations
 - > Sorbents used to determine partition coefficient (K_d) values
 - > Estimates of leachate concentrations
 - > Characterization of high-end receptor exposure factors
 - > Human health/ecological benchmarks
- Overall, not inappropriate to err on side of over-predicting risks, but needs to be considered in uncertainty analysis and risk management decisions
- RA results reflect hypothetical plants: <u>do not allow for understanding of</u> <u>risks at any specific site</u>

Use of RA Results in Proposed Regulations

- RA results used in Regulatory Impact Analysis (RIA)
 - > Regulatory benefits in cost-benefit analysis based on **arsenic** risks
 - Remediation costs avoided
 - Cancer cases avoided
 - > Several aspects of the analysis uncertain
 - Regulatory benefits dominated by beneficial use assumptions

Regulatory Impact Analysis

- US EPA's analysis of cancer cases avoided
 - Cancer cases examined over 75-year period

	Total Hypothetical Cancer Cases Avoided
Subtitle C (Hazardous Waste)	726
Subtitle D (Non-Hazardous Waste)	296
Difference between Subtitle C and D	430

- On average, difference between Subtitle C and D is about 6 excess cancer cases per year (likely an overestimate)
- Disposal requirements under Subtitle C and D almost identical; could be no difference in cancer cases avoided

Regulatory Impact Analysis (cont'd)

- Difference in cancer cases avoided between Subtitle C and D is uncertain and makes cost-benefit estimates unreliable
- Although uncertain, cases likely overestimated:
 - > Population around waste units smaller than estimated by US EPA
 - > Analysis assumes all arsenic is in trivalent form As(III)
 - According to RIA, if 100% As(V) is assumed, cancer cases decrease by 96%
 - The cancer potency estimate for arsenic is 17-fold higher than value used in 2010 RA (and is a value that has not been finalized)
 - Assumptions about non-compliance
 - Reliance on 2010 RA risk estimates which were designed to overestimate actual risk
 - In general, hypothetical risk estimates cannot be directly used to calculate cancer cases – need properly designed epidemiological study

In Reality....

- Human health
 - No documented human health effects for landfills or surface impoundments
 - > "Detections" and "exceedances" of human health criteria (*e.g.*, MCLs)
- Ecological
 - > Several case studies with observed adverse effects, for example:
 - US DOE Savannah River D-Area Site near Aiken, South Carolina
 - Belews Lake, North Carolina
- Effects observed at biochemical, individual, and population level
 - Effects include lethality, reduced growth and reproductive capacity, altered development, reduced metabolic activity, and behavioral changes

In Reality..... I

- Key Conclusions
 - Overall, effects noted at sites with outdated waste management practices
 - With the exception of selenium and boron, no individual CCP contaminant has been directly and repeatedly implicated as a controlling factor for observed ecological effects
 - While examination of several measures of effect and exposure are informative, these are often unreliable for demonstrating population-level effects when examined individually

In Reality.....Kingston

- Studies ongoing...
- Human health
 - Community studies have not shown evidence of short-term side effects
- Ecological
 - > Integrative approach
 - Some sub organism effects
 observed
 - *e.g.*, delayed ovary development
 - No adverse effects on population or community characterized

Toxicological Updates Important to CCR RA

- Arsenic
 - > Major risk driver in most CCR human health RAs
 - Proposal to increase cancer potency 17-fold
 - Revised non-cancer assessment also slated for revision
- Cobalt
 - > Under Review
 - Provisional assessment shows increase in non-cancer oral criteria (67-fold)
- Chromium (hexavalent)
 - Proposal to evaluate as oral carcinogen (has not been considered carcinogenic in the past)
 - Without consideration of technical feasibility, health-based drinking water level could change from 100 μg/L (current MCL) to 0.04 μg/L (2,500-fold difference)

Overall Summary

- In 2010 CCR RA, arsenic and cobalt were two major risk drivers
 - Surface impoundments associated more risk than landfills (human health and ecological)
- Small difference in cancer cases avoided between Subtitle C and D, especially considering uncertainties in assessment
- In reality, no evidence of human health and ecological effects associated with outdated practices
- Proposed changes to toxicity criteria in IRIS likely to affect future RA, and health-based CCR RAs and regulations

Thank You

- Please feel free to speak with me or email me any questions!
 - > Ari Lewis, <u>alewis@gradientcorp.com</u>

