

SOLUTIONS . PERFORMANCE . RELATIONSHIPS

Marsulex Environmental Technologies

Advanced Ammonium Sulfate Wet FGD

Amy P Evans July 26, 2012

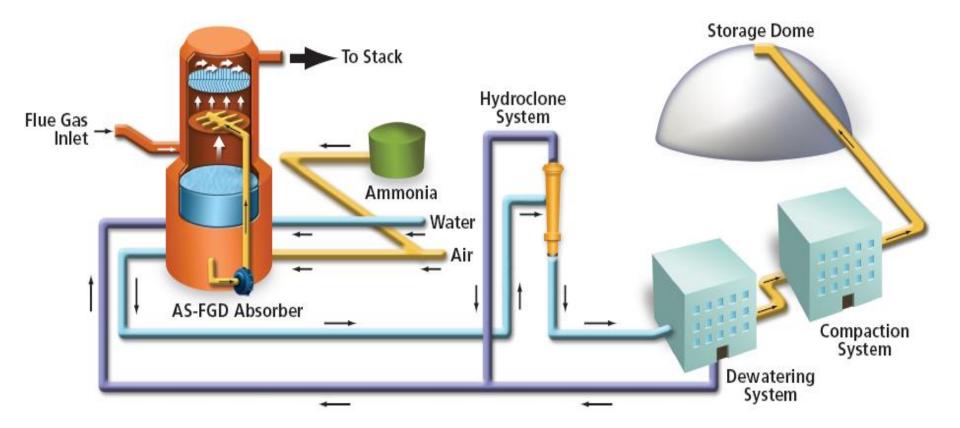
www.met.net

Proprietary Ammonia-based FGD

Ammonium Sulfate Process (AS-FGD)

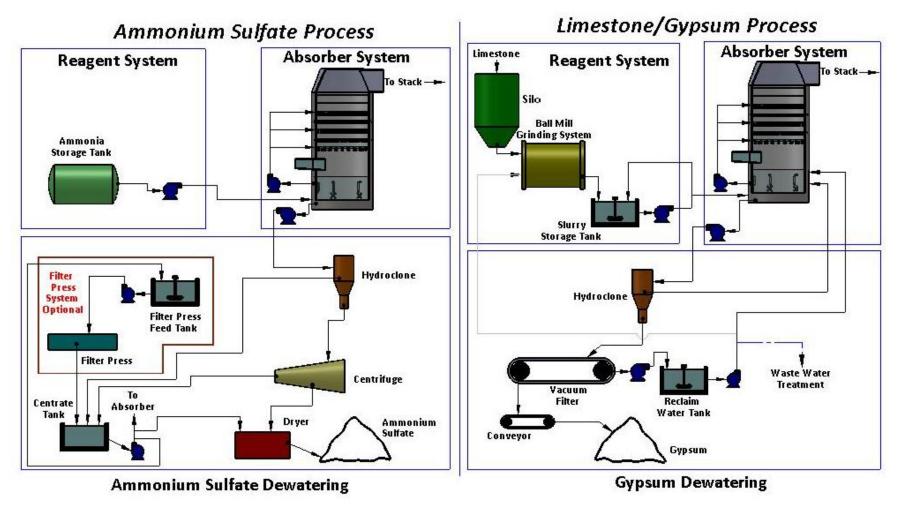
Offers significant advantages over traditional flue gas scrubbing

- Economics enhanced with low cost, high sulfur fuels
- Reduces/eliminates solid and liquid waste issues/costs
- Valuable AS fertilizer provides revenue stream
- No CO₂ greenhouse gas is produced in the AS FGD <u>unlike</u> conventional limestone FGD (where ~0.7 ton CO₂ is released per ton SO₂ absorbed.)



Proprietary AS-FGD

Ammonium Sulfate Process



Process Comparison | Limestone vs. AS-FGD

Same Proven Absorber – Different Reagent and Dewatering

Compacted (Left) and Standard Product

Product Quality Characteristics

<u>Purity - 99+%</u>

- Nitrogen 21.0 21.1%
- Sulfur 24.0 24.2%
- Water Insoluble Matter < 0.1%
- Color White to Beige
- Heavy Metals < 10 ppm

Exceeds fertilizer specifications

Particle Size

- 1.0 mm 3.5 mm
- 240 275 SGN
- Uniformity Index 45 50

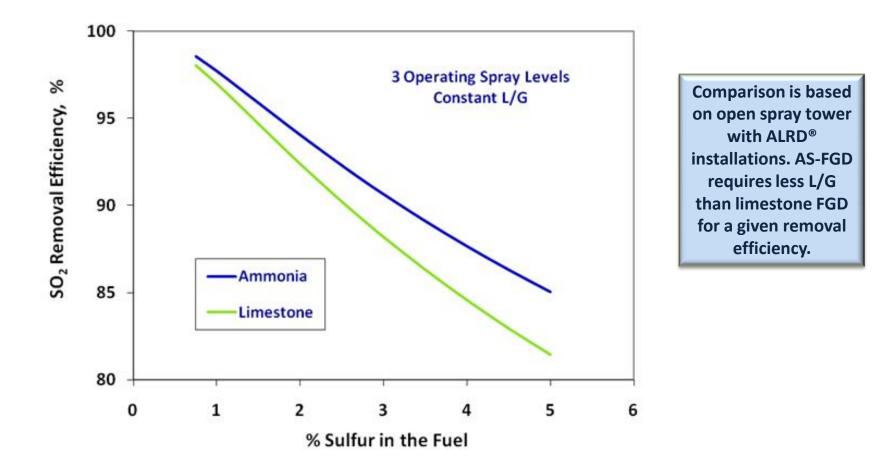
Ideal for bulk blending & direct application

Residual Moisture

- Multiple Drying Steps
- Less Than 1.0 wt% Moisture
- Coated with Anti-caking Agent

Excellent storage & handling

<u>Hardness</u>


- Demonstrated Compaction Technology
- Expertise in Product Hardening Technology
- 1 3% Attrition in Industry Test

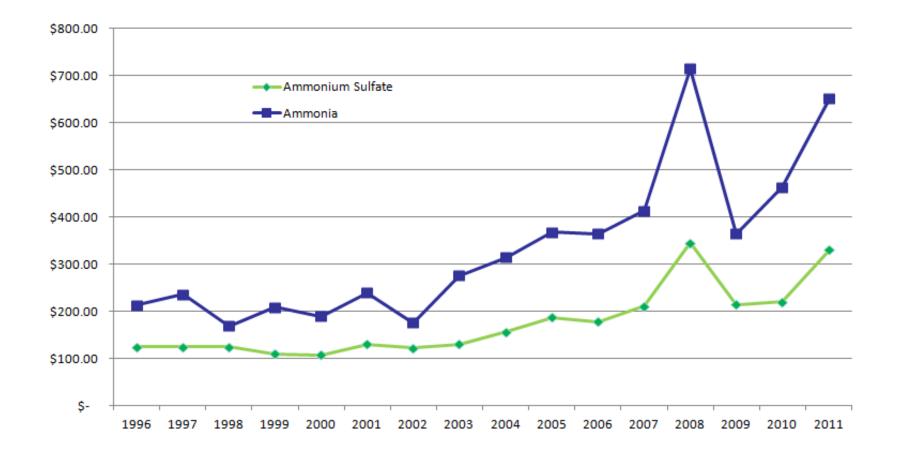
Can be easily handled and transported

Reagent Effectiveness – Ammonia vs. Limestone

Process Chemistry

$$SO_2 + 2NH_3 + H_2O \longrightarrow (NH_4)_2SO_3$$
 (1)

 $(NH_4)_2SO_3 + 1/2O_2 \longrightarrow (NH_4)_2SO_4$ (2)


- For every part (mass unit) of SO₂ removed:
 One-half part Ammonia is consumed
 Two parts of Ammonium Sulfate is produced
- **One part** of Ammonia generates **four parts** of Ammonium Sulfate fertilizer

- Ammonium Sulfate Production -100 tpy per % Sulfur per MW

Reagent and Product Historical Price Trend in the United States

Income Potential

A 600 MW Unit's Ammonium Sulfate Production 50,000 tpy per % Percent Fuel Sulfur

- Assume NH₃ and AS market pricing results in a positive differential of \$100/ton average of AS produced:
 - = <u>\$10MM/year</u> for 2% sulfur fuel
 - = <u>\$20MM/year</u> for 4% sulfur fuel

Site-specific factors such as actual source/cost NH₃, market price of AS, unit load factor, fuel costs, transportation, etc., need to be factored.

Dakota Gasification Company

350 MWe | Ammonium Sulfate WFGD

DGC is a subsidiary of Basin Electric and was a partner in the first commercial application of MET's patented ammonium sulfate FGD technology. DGC selected the MET process over conventional limestone scrubbing.

Dakota Gasification Company North Dakota

Fuel:	Heavy Residue
% Sulfur:	5.0% Design
Inlet Gas Volume: (acfm)	1,187,000
Reagent:	Ammonia
Design AS Production (Ton/year):	145,000
SO ₂ Removal Efficiency:	98%
Absorber Type:	Spray Tower
AS-FGD Start-up	1996

DGC Tested Performance vs. Guarantee Level

Design Parameter	Units	Guarantee	Performance
SO ₂ Removal Efficiency	%	93	95-98+
Ammonia Slip	ppmv, wet	<10	3-10
AS Product Purity	wt %	≥99.0	99.5
AS Product Moisture Content	wt %	<1.0	<0.1
AS Product Hardness	%	<5	1-2
Size Guide Number	-	240-290	250-280

Dakota Gasification Company

DakSul 45® Specification

DakSul 45[®] AS product specification can be located <u>http://www.dakotagas.com/</u>

Syncrude UE-1 Upgrade Complex

315 MWe | Ammonium Sulfate WFGD

UE-1 Expansion Plant Alberta, Canada

Coker/CO boiler offgas
Ammonia FGD & fertilizer plant
1,300,000
109,000 te/yr granular AS fertilizer
Spray Tower
95+%
2006

Syncrude Performance vs. Guarantees

Design Parameter	Units	Guarantee	Performance
SO ₂ Removal Efficiency	%	93	95-98+
Ammonia Slip	ppmv, wet	<10	3-7
Opacity	%	<4% from NH3	0% from NH3
Pressure Drop	inches w.c.	<11	7-8
AS Product Purity	wt %	> 99.0	99.5
AS Product Moisture	wt %	< 1.0	< 0.1
Size Guide Number	-	240-290	240-260

SINOPEC - Qilu

2 x 200 MW | Ammonium Sulfate WFGD

Qilu Thermal Plants Shandong Province, China

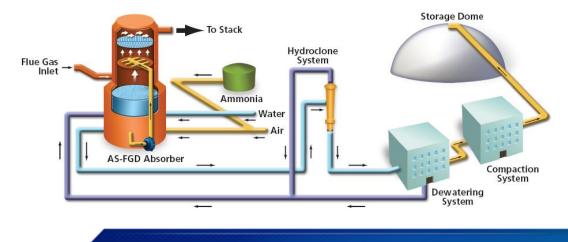
Fuel:	Coal
Scope:	EPC
Inlet Gas Volume: (acfm)	1,162,547 Kg/Hr
Absorber Type:	Open Spray Tower
SO ₂ Removal Efficiency:	98%
Startup Date:	Unit 2: Jul '09 Unit 1: Sep '09
Byproduct:	Standard Grade Ammonium Sulfate

Zaklady Azotowe Pulawy

300 MW

Combined Heating and Power Plant | Pulawy, Poland

Coal-Fired Boilers
Technology, engineering, key components and field services
1,365,000
Ammonium Sulfate Fertilizer
Open Spray Tower
>93.5%
2012



Proprietary Ammonium Sulfate FGD

Summary of Environmental Solutions

Advantages of MET Ammonium Sulfate Process

- Commercially proven for over a decade
- Site specific economics including offset of operating costs, potentially lower fuel costs, lower capital costs
- Ammonia scrubber typically does not generate a purge stream to WWT
- Ammonia scrubber produces high value byproduct versus low value gypsum or sulfite waste sludge

