

Control of Respirable Crystalline Silica Release from Sand Movers in Oil and Gas Extraction

Travis Anderson, NOV Eric J. Esswein, NIOSH Santo Petito, Airis Wellsite Services John Saldickas, ArrMaz Matt Navea, Preferred Sands

Sources of Respirable Crystalline Silica (RCS)

- NIOSH researchers identified major sources of RCS generation/release:
 - Thief hatches on top of sand movers
 - Uncapped side fill ports
 - Vehicular traffic
 - Transfer belt under sand movers
 - Sand dropping or mixing in belt or blender area
 - Transfer belts from sand movers to blenders
 - End of sand mover conveyor belt

1. Release from top hatches of FracSanders

By far, the greatest amount of dust is generated during Bin Loading as shown.

Photo Courtesy Eric J. Esswein, NIOSH

3

Photo Courtesy of Michael J. Breitenstein, NIOSH

2. Transfer Belt under the FracSanders

3. Site Traffic / Road Dust

4. Sand Dropping in Blender Hopper

5. Release from MultiSander Operations

6. Release from Stinger

7. Dust Ejected from Open Fill Ports

Travis Anderson

National Oilwell Varco

Typical FracSite

Typical FracSander Cross-Section

FracSander Mounted Dust Collection System

- 20 Drop-in Pleated Polyester Cartridges, 580 sq.in. Total Filter Area 99.9% Efficiency @2 Microns
- Reverse/Pulse Cleaning
- Pulse-Jet Solenoid Valves mounted in NEMA 4
 Enclosure
- Pyramidal Discharge Hopper
- Internal Inlet Duct with Air Diffuser and Sand Separator
- Integrated Suction Fan 3560 CFM @ 4500 RPM
- Allows up to four (4) Pneumatic Trailers (~900 cfm max each) to fill the FracSander simultaneously
- Magnehelic Differential Pressure Gauge for Filter Condition monitoring
- Fill Pipe End Caps
- Sealed Roof Hatches with Integrated Pressure Relief
- 50 gal Dust Collection Barrel with Service Valve, Transition and Flex Hose

Dust Collection System Components

Dust Collection System Method of Operation

Dust Collection System Daisy-Chain

Competitor Unit Retrofit

Bin 4 Overfill Prevention

Bin 4 Overfill Prevention

Bin Gate Material Control Skirts

Sand Launching and Aeration

Stinger Discharge Chutes

For Additional Information

Travis Anderson National Oilwell Varco 936-873-2600 main 210-572-4021 direct Travis.Anderson@nov.com

www.nov.com

Eric Esswein

NIOSH

Disclaimer

The findings and conclusions in this presentation are those of the author(s) and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

NIOSH Mini Baghouse Retrofit Assembly

- Proof of concept, June 2012, 2nd and 3rd generation versions
- Patent pending
- Fills immediate need: engineering control for silica dust
- A "bolt on control"
- No need to remove the sand mover from the field

Control of Respirable Crystalline Silica Release from Sand Movers

• The 3rd generation NIOSH mini baghouse retrofit assembly was field tested at Southwestern Energy (SWN) Sand in Arkansas, 05/2015

Four filter bags were mounted on each thief hatch, instead of one

Improvements noted in filter pressure drops

* During 2013 test, operations had to be shut down, and bags shaken, when pressures exceeded ~2000 Pa.

Effectiveness of Mini Baghouse Retrofit Assembly Generation 3 was Evaluated

• 168 area air samples were collected at 12 locations

Effectiveness of Mini Baghouse Retrofit Assembly Generation 3 was demonstrated Respirable Dust

Effectiveness of Mini Baghouse Retrofit Assembly Generation 3 was demonstrated RCS

Effectiveness of Mini Baghouse Retrofit Assembly Generation 3 was demonstrated

Mini-Baghouse - Next steps

- Possible improvements to clamping mechanism
- Patent pending
- Form partnership for implementation
- Evaluate a range of respirable silica control technologies

Request for Assistance

- These results are preliminary
- Additional field research required
- Requesting a licensee to license and commercialize the NIOSH mini-baghouse
- Requesting additional industry partners to assist in further evaluating respirable silica control technologies
- Communication of initial research results: NIOSH Science Blog, journal article, conference presentations

For Additional Information

Eric Esswein NIOSH eje1@cdc.gov

Santo Petitto

Airis Wellsite Services

AIRIS - PATENTED DUST MITIGATION SYSTEM

- Non-disruptive: Unique raised equipment achieves total dust control without interference or generation of hazards
- Universal: Total dust control solution fits any pressure pumper's sand moving equipment
- Responsive: Focused on providing total solutions customized for individual operator needs
- Comprehensive: Aiming for "total compliance," we help operators craft and execute OSHA-required Exposure Control Plans

INDUSTRIAL HYGIENE TESTING

TESTING BENEATH THE ACTION LEVEL

SAMPLE NUMBER	AREA MONITOR	LAB ANALYSIS	ACTION LEVEL
1	NORTH WEST SILO, TBELT & BLENDER BEHIND AIRIS UNIT	0.010 mg/m^3	0.025 mg/m^3
2	WEST CENTER SILO	0.015 mg/m^3	0.025 mg/m^3
3	EAST OF BLENDER, NEAR CHEMICALS	0.022 mg/m^3	0.025 mg/m^3
4	EAST CENTER SILO	<0.006 mg/m^3	0.025 mg/m^3
5	FLUID STORAGE, NEAR BLENDER	0.009 mg/m^3	0.025 mg/m^3
6	BLENDER HANDRAIL	0.018 mg/m^3	0.025 mg/m^3

For Additional Information

Santo Petitto Airis Wellsite Services <u>spetitto@airiswellsite.com</u> Airiswellsite.com

John Suldickas

ArrMaz

SandTec[™] Introduction – How it Works

Coating sand involves 2 key aspects for proper application:

ArrMaz coating system ensures a consistent, high quality product is produced.

Key Benefits

Minimizes Silica Dust During Sand Transfer & Reduces Risk of Silicosis

 Testing has shown >90% and many times >99% reduction in respirable dust levels

Provides Protection at All Locations through Supply Chain

Mechanical systems can only treat at certain locations and not all transfer points

No Requirement to Change Existing Equipment Investments

 No need to invest in special equipment and make changes to related procedures (airslides/mountain movers/sand chiefs/sand kings/T-belts/etc.)

Key Benefits

Economically Feasible Compared to Alternative Solutions

Sand treatment expense is low

Substantial Cost Benefits

- Brings compliance to **all** handling points throughout the supply chain
- Achieving results below the Action Limit allows avoidance of employee and site monitoring costs (potentially \$7/ton)
- Equipment maintenance savings due to low dust environment (potentially \$1.15/ton)

Environmentally Friendly

• The coating is non-toxic and biodegradable

Well Trial and IH Monitoring Results

- Single Well Ops
- 8.9 Million Pounds of Treated Sand
 - 0.95 million lbs 100 mesh
 - 1.0 million lbs 20/40
 - 6.9 million lbs 40/70
- Slickwater Frac Fluid
- Personnel airborne monitoring
- No other mechanical means of dust control

Visuals – Sand Bin to Blender Transfer

Visuals – Pneumatic Unloading

For Additional Information

John Suldickas ArrMaz jsuldickas@arrmaz.com www.arrmaz.com

Matt Navea

Preferred Sands

For Additional Information

Matt Navea Preferred Sands <u>mnavea@preferred.com</u>

THANK YOU FOR JOINING US TODAY

If you have questions we will meet with you following this session

