Title: Fully Automating HRSG Feedwater Pumps

Even a relatively simple start-up process can have many steps and delays for operator cross-checks. Automation can simplify the procedure for the operator while reducing start-up time. In addition, more sophisticated controls techniques may be applied to improve process stability, reduce energy usage, and increase operating flexibility. Modern distributed control system (DCS) platforms offer capabilities that were unavailable just a few years ago. Features such as integrated graphical engineering environments, simplified sequencing controls, and improved human-machine interfaces (HMI) make higher levels of automation more practical from the standpoints of implementation, maintenance, and ease of use. The timing of these advances couldn’t be better—critical operating personnel throughout the power industry are approaching retirement age, and there are insufficient numbers of skilled younger personnel to replace them. Leveraging the existing plant knowledge base to design automation that reduces the burden on plant operators will be essential to meeting tomorrow’s plant demands. As an example, the following case study describes automating a simplified feedwater system for a combined-cycle power plant. The existing legacy DCS controls are proven and reliable; however, the sequence of operations and coordination of regulatory controls is not automated, therefore, it requires a high degree of knowledge and attention on the part of the operator. This case study describes a combination of controls automation strategies and HMI techniques designed to increase the overall level of automation while improving ease of use by operators and maintenance personnel. This article was published in Power Magazine in 2011 and written by Steven Leibbrandt and Bill Thackston, of Siemens Energy Inc. and is accessed in the intelligence system by clicking on the above title

Click Here For Complete Article Text

 

   Person Information
   Application Sequencing
 221112 - Fossil Fuel 化石燃料  Gas-fired 燃气              
Company  Product  Process  Other  Subjects  Event  Event  Date  Location  Publication  Publication  Date Text  Descriptor
  • Siemens

  • Automation

  • Heat Recovery Steam Generator

  • Pump

 

 

 

 

  • Power

 

  • 6/1/2011

 

  • Article