Combustion optimization by Tunable Diode Laser Spectroscopy

Arthur Groenbos Product Manager Gas Analyzers Yokogawa Europe BV arthur.groenbos@nl.yokogawa.com

Agenda

- Introduction Yokogawa
- What is TDLS?
- Basics of combustion
- Example from the field
- Conclusion

Yokogawa's 100 year history

Worldwide Business Operations

Global network supporting business growth

<u>Number of Employees</u> Worldwide : 19,685 / Outside Japan : 11,089

• Regional Head Quarters

15 subsidiaries and 1 affiliate in Japan 69 subsidiaries and 2 affiliates outside Japan

Yokogawa Middle East & Africa

Yokogawa Electric International

Yokogawa Corporation of America

Yokogawa portfolio Industrial Automation & Control

Corporate Management (ERP*) Integrated business operation systems

What is TDLS?

What is TDL Spectroscopy?

- TDL: Tunable Diode Laser
- Based on absorption spectroscopy; measuring the amount of light that is absorbed as it travels through the sample being measured
- Absorption equals concentration: Lambert-Beer's law

Lambert Beers' Law

Fundamental Vibration of the Water Molecule

- Molecules can be considered oscillators
- The bonds correlate to springs and the atoms are mass balls
- The molecules vibrate by absorbing heat energy from the ambient

What will happen, if we radiate the molecules with the resonance frequency?

Absorption of IR-Radiation

Absorption of IR-Radiation

IR radiation will be attenuated

TDLS: an IR analyzer that measures also Oxygen

Stretching and bending of the bonds within molecules occurs at a frequency that is specific to that particular bond. If the vibration causes a change in dipole of the molecule then light at a particular frequency in the infrared band will be absorbed.

IR Spectrum of Water

- Diode lasers have very narrow wavelength emission (line width), typically 0.00004nm (0.04 pm = 0.04 *10⁻¹² m) wide which allows hundreds or thousands of data points across the peak.
- Therefore, they can focus on a single defined peak that has no overlap
- The laser scans the bandwidth, measuring the peak and baseline

Operation Yokogawa TDLS

1. The laser is held at a fixed temperature as a <u>coarse wavelength</u> <u>adjustment</u>

2. A current ramp is fed to the laser as the <u>fine wavelength adjustment.</u> The collimated light passes through the gas to be measured. The amount of light absorbed by the peak is proportional to the analyte concentration

3. The light is then focused on a detector and this direct signal is used to quantify the light absorbed by the analyte

New TDLS8000 "Simple and Robust"

Intuitive Color Touch Screen

> 8-Stage Auto Gain

SIL 2 Certified

What are the benefits?

- 1. Easy operation and installation
 - ✓ Color touch screen
 - ✓ Display at both ends
- 2. Adaption to difficult applications
 - ✓ Auto gain
 - ✓ Reference cell
- 3. Safety design with SIL 2 certificate

- 4. Meets various network communication needs
 - ✓ Modbus/TCP and HART
- 5. Exd housing (size and optimized utility consumption)
- 6. Fully field repairable and fast diagnosis
 - \checkmark Modular boards and smart laser design
 - ✓ 50 days of data and spectrum storage

Basics of combustion

What is combustion?

• Complete combustion: $CH_{4(g)} + 2O_{2(g)} -> CO_{2(g)} + 2H_2O_{(g)}$

• Incomplete combustion: $CH_{4(g)} + 3O_{2(g)} -> 2CO(g) + 4 H_2O_{(g)}$ or $CH_{4(g)} + O_{2(g)} -> C_{(s)} + 2H_2O_{(g)}$

Combustion: theory

Flow & Analyse event 2015

10 & 11 JUNI 2015 • DE KUIPerderderd inforgerer WWW.FLOWAC.NL

Combustion: practice

Fired heater

Fired heaters are widely used in oil refining and petrochemical industry, providing heat for a main process or cracking reaction by fuel combustion

Picture brochure "Fired Heaters" 2013, Foster Wheeler

Different types fired heaters

- Fuels
 - Plant off gas ($C_1 \sim C_5$, H_2 , H_2S ... composition varies)
 - Natural gas
 - Fuel oil
- Draft system
 - Natural draft
 - Forced draft
 - Balance draft

Traditional fired heater control

- Coil outlet temperature controlled by burner fuel pressure
- (Natural draft) No air flow measurement & control
- (Forced / Balanced draft) Air flow control but no follow up to fuel amount sometime
- Flue gas measurement for emission monitoring

Typical fired heater control with flue gas O₂ control

- Coil outlet temperature control by <u>fuel flow</u>
- Burner fuel pressure control by limiting fuel control valve opening
- Coil outlet temperature controller sends <u>set point</u> <u>to both air and fuel flow</u>
- Air/fuel cross-limit may be configured
- Flue gas measurement for emission monitoring
- <u>ZrO₂ sensor</u> is installed for flue gas O₂ control

Fired heater optimization by TDLS for O₂, CO/CH₄

TDLS enables:

- ✓ Measurement near combustion zone
 - Before CO is diluted by tramp air and afterburning
 - Up to 1500 degC
- ✓ Measurement with cross firebox coverage
 - Improve accuracy against uneven combustion of the burners
 - Detect malfunction of burner by CH₄
 - Breakthrough of CO
 - Fast response: 2 seconds or less
 - High sensitivity for CO: less than 10 ppm
- ✓ O₂/CO measurement "matching"
 - Same location, same condition

Output increase vs lifetime assets

Impact of high excess air on heater lifecycle

- Efficiency of heat transfer depends on flue gas composition
- O2 and N2 have poor emissivity
- CO2 and H2O have better emissivity
- High excess air dilute CO2 and H2O: heat efficiency decreases

Impact of high excess air on heater lifecycle

- Efficiency of heat transfer depends on flue gas composition
- O2 and N2 have poor emissivity
- CO2 and H2O have better emissivity
- High excess air dilute CO2 and H2O: heat efficiency decreases
- More heat needed to maintain COT
- Overheating system

FH optimization provides more on the typical

Example from the field

Installation examples

Analyzer Installation Launch and Detect

Launch

Detect

Results from first application performance test

Stable process

Reduction of excess air: energy saving

Process flow 0,

And more results...

More stable process parameters: COT^(*)

^(*) Coil Outlet Temperature

And more...

··· Stable process parameters

Benefit calculation

✓ Evaluate control stability

om Yukio Innami

\$aving\$

Excess air / Oxygen level decreased from 3,5% to 1 %

(Note: always application and heater specific: never estimate the value based on theory)

Performance test periode results					
		Cons	umption		
	48 hours	48 hours test periode48 hours test periodeHigh O2 (4%)Low O2 (1%)		test periode	
	High			O2 (1%)	Calculations
	From 26th	To 28th	From 29th	To 31st July	
	July 11:00	July 11:00	July 11:00	11:00	
Used fuelgas [KG]		67 836		64 506	
Used heat value [GJ]		4 105		3 873	5,7%
2 days saving			3 330	kg	
Fuelgas reduction [T/day]			1,67	tones/day	
Fuelgas reduction [GJ/day]			116	GJ/day	
Savings based on fuelgas [HUF/H] (CO2)	•				xx
Savings based on fuelgas [HUF/Year]					xx
Savings based on fuelgas [EUR/Year]	Value can not be displayed due to			xx	
Heat value reduction [GJ/H]				4,844	
Savings based on heat value [HUF/H] (Energy)					
Savings based on heat value [HUF/Year]					xx
Savings based on heat value [EUR/Year]	agreement xx			xx	
Total savings [HUF/Year]					
Total savings [EUR/Year]					xx

Flow & Analyse event 2015

SAVINGS

Complete packed solution: CombustionOne

[Control] of the Fired heaters Solution

Fuel/Air Cross Limit with O2 Trim and CO Override Control

Conclusion on Combustion benefits

- TDLS measurements can provide combustion diagnostics:
 - CO measurement with cross firebox coverage
 - Average O₂ value from one analyzer
 - O₂/CO Matching for control
 - CH₄ and gas temperature measurements at high speed and across the firebox

Solutions provided by Yokogawa

- Fired heaters
 - Safety
 - Combustion optimization
 - Asset management
- Limited Oxygen Concentration
 - Safety
- Process Oxygen
- Ammonia slip
 - Emission
- Moisture
 - Process

TDL Trai

Cool temperatures but CO reaction

Flow & Analyse event 2015 10 & 11 JUNI 2015 • DE KUIP ROTTERDAM • WWW.FLOWAC.NL

THE SAFE WAY IS THE BEST WAY

Publications

- http://www.yokogawa.com/rd/pdf/TR/rd-te-r05301-004.pdf
- <u>http://www.yokogawa.com/an/laser-gas/an-tdls8000-001en.htm</u>
- <u>http://www.yokogawa.com/us/products/manufacturing-operations-</u> <u>management/process-safety-management/fired-heater-safety-</u> <u>optimization.htm#downloads</u>

Optimum Combustion Control by TDLS200 Tunable Diode Laser Gas Analyzer						
Yoshitaka Yuki " Akihiro Murata "						
The IDLENG large gas analyzer, which is haved as in a new generation of process analyzer. Charactenized stability, it effers fars in-situ analysis of high-sempora involves: the IDLESIGP's real-time measurement of e applications for optimizing combustion control in the averagemental preservation.	e musible diable laser speceroscopy. Il bight schlerchrist and long-sorm tare or correstive gen. This paper orbon momentide in a farmace, irr furnace, and its contribution to					
INTRODUCTION	introduce a layer gas analyzer described in this paper.					
Combuston furnaces such as heating furnaces and believe	COMBUSTION FURNACE AND AIR-FUEL RATIO CONTROL					
in energy sources, that is, they are cores is at B production excitosite. Because in large answard of this tuck in gas or that all is command in planes, that combustion efficancy directly direct in the preferences and emailing out of the planes. Since they generate large answare of enhance gas, in screase years in las become targetarate to reface universe generationes gases tachology CO ₂ is address to coping with polarisis creased by attropens units, with residue.	Combustion requires fixed and air (exyrgen), an interfficient are course field resident, resulting in accorpile combuston with stort and unsite. On the start hand, executed in causes problems, such as a larger amount of exhant ps and hearing of encembers air, resulting in lower their efficient player 1 shows the praceign of the architer atmos and store o combustons. The size due time jorced on the hearized an alwave, the starts of stream jorced on the hearized and an shows the starts of stream jorced on the hearized and any					
To minimize environmental burdens such as gas emissions rid beer disoptime which maintaining a table supply of energy (hero) for plant operation, same of the art measurement and control technology is estematic. Furnaces are robust facilities, and to day operate for averaged decades and the wayse conditions of each furnace vary with each inductor, mayness furture and facture Cancemative are	of air required for fiel contention (theoretical air monact).					
animity proper measurement and control of O ₃ and O(3), and only proper measurement and control of O ₃ and O(3) to also solving of multi-factored torses are required. For example, conventional convention furnament popy areant ai an intake and their internal pressures are not unaform. In addition, if air not used for construction enters the furnament furnament of furname of the low, their combustions afficiency does not	There is a new of the second o					
increase even if air is controlled by damper. In order to achieve safe and optimum combustion control of furnaces, it is necessary to work out a strategic plan for	Figure 1 Relationship between Air-fuel Ratio and Heat Efficiency (Combustion)					

ten in for the For combustion furnaces such as lassing furnaces and weater, budies in plants and factories, small-scale cumulies was den as single hop controllers are analysed in optimize the anfield cound attribute any strengthe constraints deficiency. In large constraints furnaces, advanced and the single counter (DGU) are used. These manip count the arched runs and termin pressure of the furnaces to survey CO. CO. and 20% retirements.

