Opportunities for Data Analytics in Power Generation

Prognostics: The Final Frontier

Scott Affelt XMPLR Energy June 30, 2016

XMPLR Energy

• Consulting

- Business Strategy
- Disruptive Technology Introduction
- M&A

• Technology Liaison

- Licensing & Technology Transfer
- Foreign Market Introduction
- Data Analytics

Key Opportunities for Data Analytics

- Efficiency
 - Fuel Costs
 - Capacity/Output

Reliability

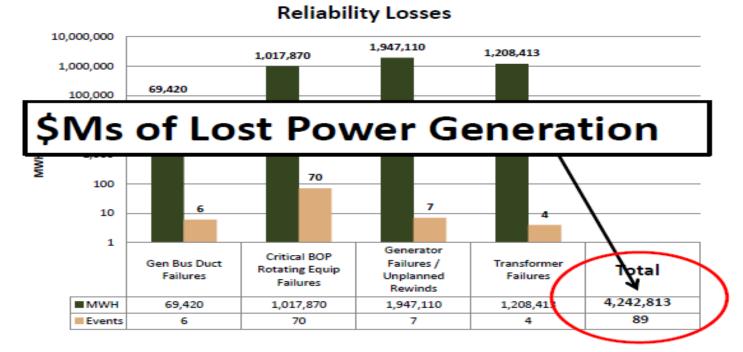
- Availability
- Capacity/Output
- Load Factor
- Maintenance

• Emissions

- Compliance
- Optimization
- Flexibility
 - Operational
 - Economic

Focus of Today's Talk
Data Science & Prognostics

Why is this Important?



Source: Duke Energy. 2007-2012

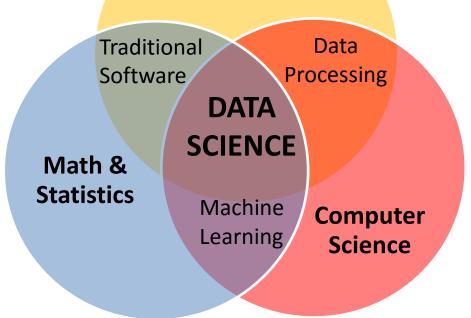
Why is this Important?

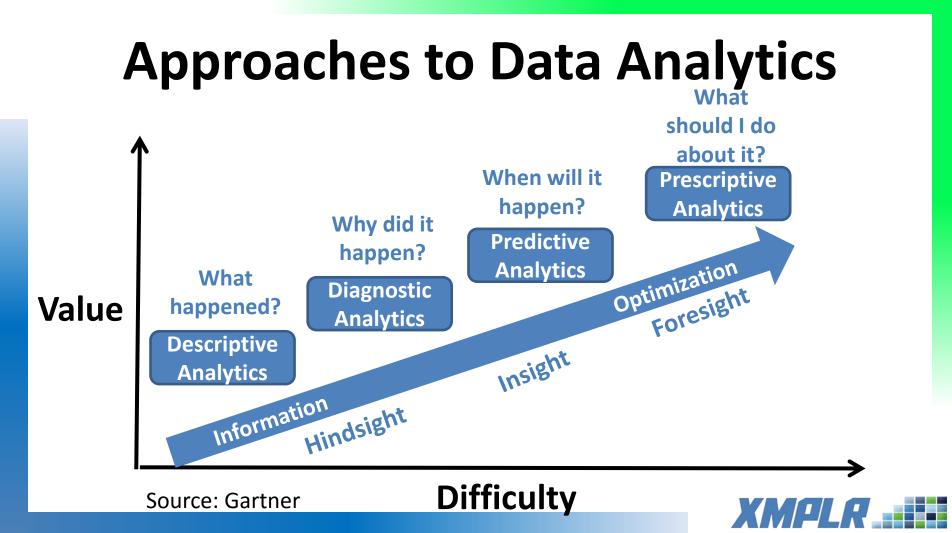
MIT Study:

Bearing Failures in Rotating Equipment cause \$240B in downtime and repair costs EVERY YEAR!

How can Data Science Help?

Domain Expertise





Diagnostics vs Prognostics

DIAGNOSTICS

What

Why

Where

How

- Failure mode detection
- Fault Location
- Detection
- Isolation

Phase 1 Diagnose

- Health assessment
- Severity detection
 - Degradation detection Pattern Recognition

PROGNOSTICS

Phase 2 Predict

- RUL Estimation
- Degradation prediction

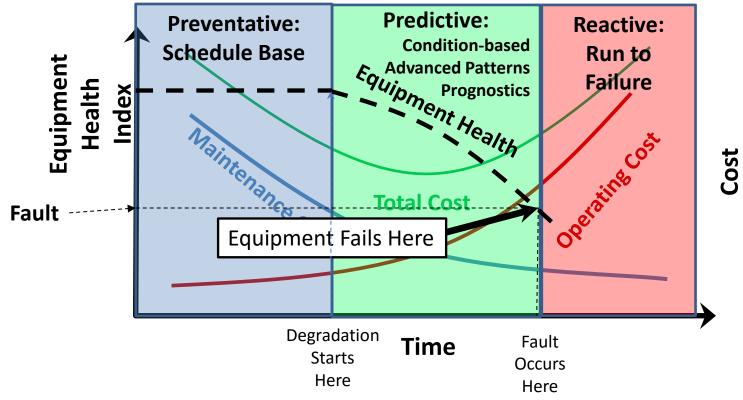
When

Source: IVHM Center

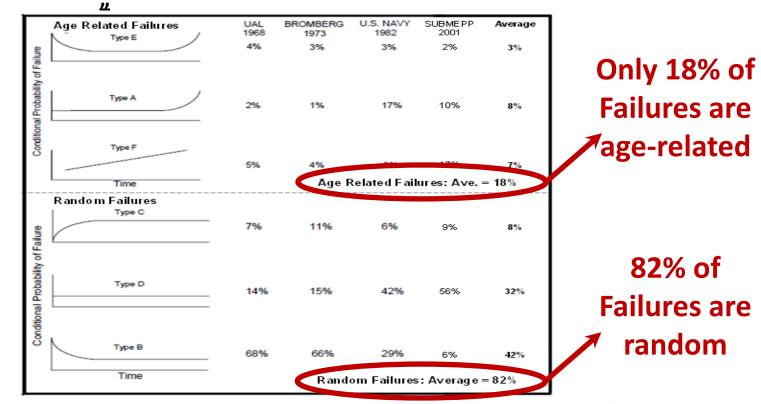
Traditional Failure Curve

- Failure rate are high in the early life "infant mortality"
- Failure rates are high at the end of life
- Remaining useful life can be predicted.
- Based on assets that have regular & predictable wear
- The Rise of Predictive Maintenance!

Predictive Maintenance



Predicting Failures is Hard



Sources: RCM Guide, NASA, Sept. 2008, and U.S.. Navy Analysis of Submarine Maintenance Data 2006

Using Predictive Analytics for Remaining Useful Life (RUL)

• Condition Monitoring

- Identifies anomalies in data trends
- Typically, provides little warning of a fault (hrs to days)

Advanced Pattern Recognition

- Specific signal patterns (features) linked to faults
- Gives indication of likely future fault
- Generally, more focused on diagnostics than prognostics

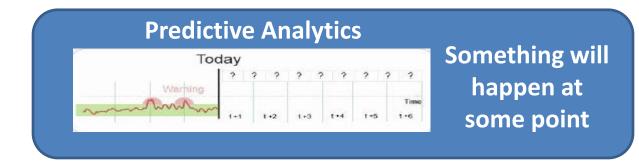
• Mean time to failure

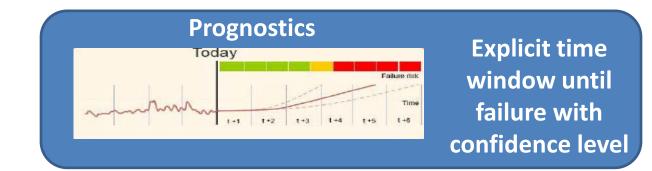
- Based on "average" life of particular asset
- Needs large set of "crash test" data
- But is your asset "average"?

Prognostics

- Predicting the time at which a system or a component will no longer perform its intended function
- Includes a confidence level associated with the time prediction.
 - (i.e. RUL of 3 months at 60% confidence level

Predictive Analytics vs Prognostics





Experienced-based Models

Advantages

- Based on actual failure experience
- Rules-based
- Simple
- Little data required

Disadvantages

- Little prediction capability
- Requires subject matter experts
- Needs continued observations
- Difficult to scale to other assets

Experience Based Moders

Cost and

Increasing

Cou

Generic, statistical life, mean time to failure

Range of Applicability

Data-based Models

Advantages

- Relatively simple and fast to implement
- Physical cause/effects understanding not necessary
- Gain understanding of physical behaviors from large datasets
- Good for complex processes

Disadvantages

- Physical cause/effects not utilized
- Difficult to balance generalizations and specific learning trends
- Requires large datasets to characterize fault features

XMPLR 📑

Data-based Models

<u>Cost and</u>

Increasing

Cou

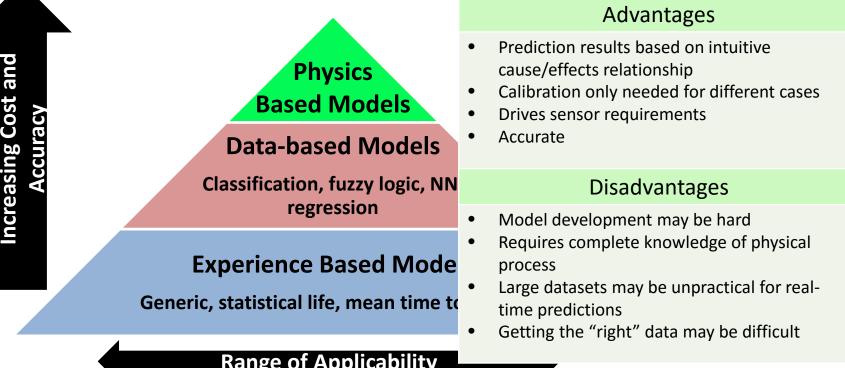
Classification, fuzzy logic, NN, regression

Experience Based Models

Generic, statistical life, mean time to fail •

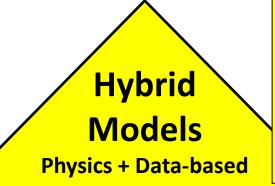
Range of Applicability

Physics-based Models



XMPLR

Increasing Cost and Accuracy



Hybrid Models

- Use components of both Physics and Data-based models
- Can provide more robust and accurate RULs
- Can address disadvantages of each type of model

Experience Based Models

Generic, statistical life, mean time to failure

Range of Applicability

Power Generation Applications for Prognostics

Rotary Equipment

- Turbines
- Pumps
- Generators
- Compressors
- Gearbox
- Bearings
- Fans

Other Possibilities

- Boiler Tubes?
- HRSG?
- Condensers?
- Heaters?
- Valves?

Prognostics Implementation Challenges

• Data

- Measuring the right things
- Cost of New Sensors
- Access to multiple data sources
- Clean data

People

- M&D centers: leverage expertise
- In-house vs outsource

• Accuracy

- Confidence in predictions
- Uncertainty in predictions
- Validation and verification

• Data Security

- Various data sources
- Cloud-based or local server
- Sharing data/information within company

Conclusions

- Data analytics can help operators manage and improve reliability of generation assets.
- Prognostics can be used to determine a RUL with a time element and confidence level
- Operators can use the RUL to actively manage maintenance schedule and operating conditions in order to maintain reliability.

Thank You.

XMPLR Energy Saffelt@XMPLRenergy.com

303-883-0399

