Combined Cycle Gas Turbine Valve Markets, Issues and Options

A speech at Valve World Americas, 2015
GTCC presents many challenges for valve suppliers

• Gas turbine combined cycle plant designers are being challenged by the need to provide rapid cycling. The driver is the need to provide supplementary power to solar and wind power generation networks. These sources generate power when the sun is shining or the wind is blowing but have to be backed up by an alternative source when it is cloudy or quiet.

• Valves are critical to fast cycling success. Valve technology must evolve along with the fast cycling designs. Over 70,000 MW of new gas turbines will be constructed each year for the foreseeable future. In addition many existing plants will be upgraded to transition from peaking service to the fast cycling support mode
$ 2. 1 billion CCGT Valve Solutions Market

- There is the potential to generate $700 million/yr in “Valve solutions.”
- Total solutions expands a $1.4 billion market by 50%.
- The increase in margin is closer to 75%.
- ROI is higher but so is risk.
- Knowledge is the key to risk reduction.

Gas Turbine Combined Cycle Valve revenues

<table>
<thead>
<tr>
<th>Product /service</th>
<th>2015 market $ millions</th>
</tr>
</thead>
<tbody>
<tr>
<td>New valves</td>
<td>900</td>
</tr>
<tr>
<td>Repair parts</td>
<td>500</td>
</tr>
<tr>
<td>Valve solutions</td>
<td>700</td>
</tr>
<tr>
<td>total</td>
<td>2100</td>
</tr>
</tbody>
</table>
What are Valve Solutions

• The term “valve solutions” can best be described by an example.
• Pulse jet valves are required for gas turbine intake filters. Pentair sells a solution not just a valve.
• The selection of filter media and design depends on the ability of Pentair to clean the media. So better valve systems allow consideration of different media and filter designs.
• Pentair knows more about sizing the compressed air system and valves than do the filter suppliers. This is reflected in considerably higher revenues than would be possible without this knowledge and technology.
Modelling filter cleaning performance (Pentair)

- For critical applications filter cleaning performance is numerically modelled, through GOCO calculations and/or CFD simulation.
Valve solutions extend to operation and maintenance

- Valve solutions extend not only to the initial offering but to operating and maintenance support to the plant owner. Pentair presents another example of how to provide valve solutions.

- Pentair reviewed valve products designed for combined-cycle power facilities in small to medium bore drain and vent applications. Applications were selected for their severe duty cycles (temperature and flow), directly related to cycling of the combustion turbine/heat recovery steam generator, and their strict boiler and piping code design requirements. Pentair evaluated the valves overall contribution to the customer's corporate strategy objectives including the options to repair or replace valves at specific intervals.

- The conclusion was that repairing higher quality valves with long life was more beneficial than frequently replacing lower quality valves.
Valve manufacturers must understand the processes

• The valve manufacturer needs to understand the processes and trends. Many plants are opting for zero liquid discharge. Many additional valves are required when wastewater is recycled and evaporated rather than discharged.

• There are a number of innovative designs for the fast start heat recovery generator (HRSGS). B&W PGG has introduced a new concept for a rapid start HRSG by, incorporating the use of one or more vertical steam separators instead of an HP steam drum. Valves play a key role in reducing the start time.
Emerson total solution with valve and silencer

- **Sky-vent system from Emerson insures temperature control of turbine during startup**
- Valves within the sky vent system of a combined cycle plant serve one of the more important control functions. During initial operation of the HRSG, these valves bypass steam (HP/HRH/LP) around the steam turbine to ensure that the unit doesn't come up to temperature too quickly. This is done as the process lines are warmed prior to admitting steam through the turbine bypass valves that dump to the condenser.
- **Revision Date:** 6/10/2014
- **Tags:** 221112 - Fossil Fuel 化石燃料, Emerson Process Management, Heat Recovery Steam Generator, Control Valve, Valve
Program Outline

Users of this program on valves
- End-user power plants
- Consultants and engineering firms
- Suppliers of valves

Major Valve Systems
- HRSG
- Turbine
- Feedwater system
- Inlet Air (fogging)
- Flue Gas
- See illustration
Gas Turbine Decision Program

<table>
<thead>
<tr>
<th>Subject</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Orchard</td>
<td>A website with articles, analysis, recorded webinars, InterWEBviews™ and intelligence database which is continually updated (free to end users but not others)</td>
</tr>
<tr>
<td>Decision Guides</td>
<td>Route maps and summaries of decision paths for specific areas in the orchard</td>
</tr>
<tr>
<td>4As Operating System</td>
<td>The operating system for the decision orchard with Alerts, Answers, Analysis and Advancement</td>
</tr>
</tbody>
</table>
Periodic GTCC valve Mcilvaine Webinars

- **Valves for Power Plant Steam and Water Applications Webinar - Hot Topic Hour June 2, 2011**
- The speakers addressed issues for the various valve applications in power plant steam and water systems. Password: hth484
- **Revision Date:** 6/2/2011
- **Tags:** 221112 - Fossil Fuel 化石燃料, 221112 - Fossil Fuel 化石燃料, Crane Energy Flow Solutions, Weir Valves & Controls, CCI, Valve, Corrosion, Erosion, Vibration, Noise, Cavitation, Flow Control
Overview of CCGT Major Systems
(Boiler Feed, HRSG, Turbine, Condenser, Flue gas, other systems)
Major Valves in CCGT Water & Steam Cycle
Common Valve Groupings in CCGT

Valve Applications

- Block Valve (usually gate, ball or butterfly)
- Throttling Valve-optional (usually globe)
- Non-Return Check Valve
- Block Valve (usually gate, ball or butterfly)
- Re-circulation Valve
- Control Valve (usually globe)
- Bypass Valve
Specific Issues and Evaluation Considerations

<table>
<thead>
<tr>
<th>Application</th>
<th>Issues</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Feed</td>
<td>Single Valve or Dual Valve</td>
<td>Achieving the most economical and effective solution to boiler feed valving while avoiding cavitation and retaining startup and variable load performance</td>
</tr>
<tr>
<td>Turbine Bypass</td>
<td>Stellite Delamination</td>
<td>Mostly affecting steam valves in high pressure (hp) turbine bypass or hot reheat (hrh) lines; can result in valve damage/seat leakage or damage to turbine</td>
</tr>
<tr>
<td>Turbine Control</td>
<td>Cycling</td>
<td>More prevalent in CCGT plants than base-load coal-fired plants, and can require special valve capabilities for the increased thermal and mechanical stress</td>
</tr>
<tr>
<td>Hazardous Fluid</td>
<td>Double Block & Bleed (Ammonia)</td>
<td>Hazardous fluids sometimes require double block & bleed compliant valves for maximum safety. Ammonia handling is one application in CCGT power plants.</td>
</tr>
<tr>
<td>Handling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two-Seated Valves</td>
<td>Center cavity over-pressurization (CCOP)</td>
<td>Center cavity over-pressurization can be an issue with two seated valves, including double block & bleed valves</td>
</tr>
<tr>
<td>SCR</td>
<td>Anhydrous, aqueous, or urea</td>
<td>Ammonia for SCR NOx removal can be accomplished with anhydrous ammonia, aqueous ammonia, or urea with onsite ammonia production.</td>
</tr>
<tr>
<td>Inlet Air</td>
<td>Fogging Control</td>
<td>Generally advantageous in hot, dry climates to increase inlet air density and increase power output.</td>
</tr>
<tr>
<td>Vent & Drain</td>
<td>Repair/Replace</td>
<td>The economics of repairing or replacing worn valves</td>
</tr>
</tbody>
</table>
Specific Issues and Options for steam valves

Factors creating issues
- Higher temperatures
- Higher pressures
- Fast and frequent cycling
- Entrained water drops

Resulting issues
- Valve trim wear
- Cavitation
- ‘flashing
- Vibration
- Seal damage
- *Is flow accelerated corrosion a problem with valves as it is with other components*

Options
- Follow ISA guidelines for control valves
- Buy severe service valves (*need definition*)
- Consider special materials and coatings
 - Prevent stellite liberation
 - Fuse coating to base material
- Separate small start up valve for low loads
- Change inspection, operations, and maintenance procedures
- Specify valve after you know pump feed pressure
- Faster response and reliable actuators
- Repair rather than replace
- Buy all HP valves from one vendor
- Do not oversize feedwater valve
- Require tight shut off (*better tolerances*)
- Hydraulic actuators for fast response
- Electric actuator increases reliability
CCGT Severe Service Valve Requirements Relative To Coal Fired Power

• Valve requirements for CCGT power generation are similar in many respects to conventional coal-fired power plants
 – Many of the same valve types are required including pressure relief valves, turbine bypass valves, turbine drain valves, attemperator spray valves, recirculation valves, and others
 – Severe service conditions will apply involving high temperatures, high pressures, high delta P’s, and other severe service conditions
 – More “cycling” of valves may be expected in CCGT plants due to load variations for plants that are not purely base-load plants, or for plants that serve as peaking plants or backup for renewable power including solar and wind. This creates a special set of thermal and mechanical issues unique to CCGT power plants.
Combined cycle severe service applications

Common Severe Service Applications – Combined Cycle Power Plants

- Main Boiler Feedpump Recirculation
- Start-up & Main Feedwater Regulation
- Turbine Bypass Systems
- Attemperation & Spraywater Control
- Auxiliary Steam
- Vent Valves
- Condensate Recirc valves
Severe Service Hierarchy for Control Valves

Control Valve Hierarchy

Butterfly → Ball → Globe → Severe service
Who should specify HP valves?

• L&T is supplied a complete solution for HP valves requirements for the UMPP Mundra Project. The innovative packaging concept facilitated in economics of scale, spares and service

• **Mundra Ultra Mega Power Project (Mundra UMPP)** is a subbituminous coal-fired power plant in Tunda village at Mundra, Kutch district, in Gujarat, India. The coal for the power plant is imported primarily from Indonesia. The source of water for the power plant is sea water from Gulf of Kutch.

• There is the option for complete supply of high pressure valves for either coal plants or combined cycle gas turbine plants.

• L&T is a group within Larsen Toubro who furnishes complete plants and also supplies its own design HRSG.

• So the options are
 – Owner buys all high pressure valves from one supplier
 – Owner buys a high pressure valves from several suppliers and can pick the best from each
 – HRSG supplier provides valves associated with this process
 – Plant supplier specifies and buys valves rather than the owner
Hot reheat bypass valve selection

HRH valve requirements are complex from a mechanical design standpoint. The ANSI 600-lb-rated valves range from 12 to 24 inches in diameter. They must tightly shut off and be able to be throttled (conflicting requirements for such difficult service), and their body and trim materials must deal with rapid thermal transients. Noise control and extended trim life also have become very important design requirements.

Unbalanced HRH valves are typically not used in this application because the actuation forces required for valves of this size would be too large for conventional pneumatic actuators. However, because tight shutoff is a design requirement, pilot-balanced trim is common. This design allows for the use of relatively low actuator thrust at full differential pressure (balanced when open), while enabling full unbalanced forces on the valve seat in the closed position (installed in the flow-to-close direction) to ensure tight shutoff.

Special materials, tolerances, body/trim/bonnet arrangements, and flow paths (warming lines, for example) are used to address the thermal cycling issues that HRH valves must deal with, such as weld fatigue and internal reliability. Many designs have forsaken pneumatic actuators fitted with standard positioners and volume boosters to meet stroking speed requirements in favor of smart positioners with boosters that improve diagnostic capabilities and reduce overshoot.
Specific Issues and Evaluation Considerations
(Feedwater Valving)

Boiler Feed Valve Configurations

- **Main Feed Water Control Valve** (30% to 100%) (Standard Trim)
- **Startup Feed Water Valve** (0% to 30%) (Special Trim)
- **Main/Startup Feed Water Control Valve** (0 to 100%) (Special Trim)

Application
- Boiler Feed
- Turbine Bypass
- Turbine Control
- Hazardous Fluid Handling
- Two-Seated Valves
- Inlet Air
Specific Issues and Evaluation Considerations

(Center Cavity Over-Pressurization, CCOP)

Prevention of Center Cavity Overpressurization & Thermal Binding

SUMMARY

- Prevention or elimination of center cavity overpressurization and/or thermal binding are key considerations in power plant operation.
- All valves with two seats are subject to CCOP and/or pressure locking.
- There are a number of methods to guard against CCOP and pressure locking. Choose the most effective for your plant piping system needs.
- It is the Owner’s (or designee) responsibility to identify the potential for CCOP and thermal binding.
- Because of design features, parallel slide valves are not subject to thermal binding.

Thank-you........
Specific Issues and Evaluation Considerations
(Center Cavity Over-Pressurization, CCOP)

Prevention of Center Cavity Overpressurization & Thermal Binding

Center Cavity Overpressurization (CCOP) & Pressure Locking

Applicability and Definitions
CCOP may be defined as a build-up of pressure in the center cavity of a valve (having two seats) caused by the heating of fluid which has been trapped between the seating surfaces. Such pressure may make opening the valve more difficult, and in extreme cases, render the valve inoperable.
Specific Issues and Evaluation Considerations

(Center Cavity Over-Pressurization, CCOP)

Prevention of **Center Cavity Overpressurization** & Thermal Binding

Center Cavity Overpressurization (CCOP) & Pressure Locking

Applicability and Definitions
Pressure locking may be defined as a decrease in upstream (Pla) and/or downstream (Plb) pressure, where the resultant increase in differential pressure (center cavity vs. upstream and/or downstream bores) is high enough to preclude the valve from opening.

ASME B16.34 (para. 2.3.3) assigns responsibility to the **Owner or his designee** to advise the Valve manufacturer of the potential for CCOP or pressure locking and specify a method to preclude occurrence.

These methods are as summarized herein.
Specific Issues and Evaluation Considerations
(Erosion/Corrosion Related Damage)

Velocity Related Damage Mechanisms

- Cavitation damage varies as a 5th to 6th power of velocity
- Erosion damage varies as a 2nd to 4th power of velocity
- Control valve noise varies as logarithmic with mach
- Vibration is caused by excessive fluid velocities & turbulence
- Corrosion is accelerated by velocity & fluid turbulence

<table>
<thead>
<tr>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Feed</td>
</tr>
<tr>
<td>Turbine Bypass</td>
</tr>
<tr>
<td>Turbine Control</td>
</tr>
<tr>
<td>Hazardous Fluid Handling</td>
</tr>
<tr>
<td>Two-Seated Valves</td>
</tr>
<tr>
<td>Inlet Air</td>
</tr>
</tbody>
</table>
Specific Issues and Evaluation Considerations
(Repair/Replace)

By Arvo Eilau, Pentair Valves & Controls

Current global power generation market conditions, driven by an abundance of natural gas fuel, recent advances in gas turbine technologies and more efficient combined-cycle component operation, have placed enormous demands on critical valves within thermal generation systems.

Pentair proceeded to review valve products designed for combined-cycle power facilities in these small to medium bore drain and vent applications. Applications were selected for their severe duty cycles (temperature and flow), directly related to cycling of the combustion turbine/heat recovery steam generator, and their strict boiler and piping code design requirements. Our project objective, beyond continuous product improvement, was to evaluate the products' overall contribution to the customer's corporate strategy objectives as previously outlined. This research would also compare a repairable product to a replacement product to determine which offered superior benefits.
Specific Issues and Evaluation Considerations

(Repair/Replace)

Conclusions

This study revealed that the cost to repair this type of critical thermal valve is significantly lower than the cost to replace it after every cycle. The fact that Pentair's Yarway Welbond repairable valves can be repaired inline is an additional benefit. Repairing is also a more sustainable solution, as it reduces the total process cycle.
Select valve after you know pump feedwater pressure

- It is important to know pump performance details before selecting a control valve.
- With such high feedwater pressures comes the potential for valve cavitation.
- If the pump characteristics of head loss with increasing flow are not properly understood during the selection phase, it is likely that the control valves will experience cavitation damage.
- This occurs at the plug and seating surfaces of the valve and results in subsequent leakage.
Do not oversize feedwater valves

• To prevent oversizing feedwater valves, it is necessary to understand the impact of valve capacity on protecting the HRSG from drying out
• Slightly increasing the pressure drop across the valve will prevent the valve from being oversized.
• Retrofit trim packages that alter the performance characteristic of the valve can be supplied.
• If a change is made, it is important to ensure that a revised valve characteristic does not interfere with any DCS logic
Specify tight shut off

- Require tight shutoff for feedwater valves
- ANSI (American National Standards Institute) and FCI (Flow Control Institute) have established criteria to denote leakage classes for control valves
- Class V shutoff is the typical recommendation for feedwater valves exposed to cavitating conditions. However, numerous drum-level valves have been specified by engineering contractors and HRSG OEMs with Class IV shutoff or less.
- While it doesn’t appear to make much difference on the surface because the valve does not experience cavitating conditions on paper, not selecting a valve with Class V shutoff has significant impact on valve leakage.
- The need for tight shutoff becomes apparent during unit startup. While the CT is generating electricity and the steam system is warming up, the feedpumps are operating. At this time, flow is being recycled around the pump via the recirculation valves. Since the drum-level control valves are located just downstream of the feedpumps, they are exposed to the high inlet pressures that the recirculation valve experiences.

Choices

options

• Single or dual valves for boiler feed
• Replacement or repair of hp bypass valves to address possible stellite delamination*
• Special purpose valves with enhanced cycling capability for turbine control
• Special block & bleed valves for hazardous fluids

Power points and authors

<table>
<thead>
<tr>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler feed valving</td>
<td>Fisher Controls, Experitec</td>
</tr>
<tr>
<td>Stellite delamination</td>
<td>Kim Bezzant</td>
</tr>
<tr>
<td>Valve cycling</td>
<td>Conval</td>
</tr>
<tr>
<td>Hazardous fluids</td>
<td>CCJ OnLine</td>
</tr>
</tbody>
</table>

* If repairs are needed, or if you’re buying a new valve, it would be prudent to specify a limit on base-metal dilution into the first layer of hard facing of between 10% and 20%, based on what investigators have learned to date. Minimizing base-metal dilution should reduce the hardness levels in the first layer of hard facing and reduce the potential for disbonding. Qualify a prospective valve supplier or repair services provider by specifying a demonstration to prove their welding process can minimize dilution.
As U.S. utilities curtail operation of older coal-fired plants, CTCC plants are increasingly being run at higher capacity factors, putting new stresses and pressures on plant equipment. This trend, in turn, requires crews to re-evaluate their inspection and maintenance practices. At the same time, advanced new equipment is finding its way into plants, adding greater complexity to the maintenance process.
Are special valve designs needed for fast cycling HRSGS-Conval says, yes

- When Heat Recovery Steam Generator (HRSG) combined cycle plants were first designed and built several decades ago, many of the originally-installed actuator/valve packages included lower-quality, foreign made globe, gate and ball valves.
- Conval says that these inferior valves only last 4-5 years or less. By comparison, where Conval's were specified and installed, typical valve life has been more like 16-20 years. Based on this real-life experience, more HRSG maintenance supervisors and planners are choosing to replace original lower-quality, foreign made valves with new Conval Camseal ball valves, Swivldisc gate valves and Clampseal globe valves.
- Conval valves are being used in such key HRSG processes as isolation, vents, drains, and feedwater. By their very nature, these plants frequently cycle up and down, on and off, which is very difficult on any mechanical equipment. Most OEM valves simply cannot perform in these highly demanding circumstances.
Hot reheat bypass valve selection

- HRH valve requirements are complex from a mechanical design standpoint. The ANSI 600-lb-rated valves range from 12 to 24 inches in diameter. They must tightly shut off and be able to be throttled (conflicting requirements for such difficult service), and their body and trim materials must deal with rapid thermal transients. Noise control and extended trim life also have become very important design requirements.

- Unbalanced HRH valves are typically not used in this application because the actuation forces required for valves of this size would be too large for conventional pneumatic actuators. However, because tight shutoff is a design requirement, pilot-balanced trim is common. This design allows for the use of relatively low actuator thrust at full differential pressure (balanced when open), while enabling full unbalanced forces on the valve seat in the closed position (installed in the flow-to-close direction) to ensure tight shutoff.

- Special materials, tolerances, body/trim/bonnet arrangements, and flow paths (warming lines, for example) are used to address the thermal cycling issues that HRH valves must deal with, such as weld fatigue and internal reliability. Many designs have forsaken pneumatic actuators fitted with standard positioners and volume boosters to meet stroking speed requirements in favor of smart positioners with boosters that improve diagnostic capabilities and reduce overshoot.

Severe Service Applications

- Feedwater Pump Recirculation
- Feedwater Control
- Drum Level Control
- DA Level Control
- Reheat Spray
- Superheat Spray
- Auxiliary Steam
DFT Control Valve - Shut Off

- Upstream pressure pushes the Ball into a lapped downstream Seat face, which yields high unit loading for exceptionally tight closure.

- The Ball changes positions each time the valve is cycled, which results in a new seating surface each time it closes.
DFT - Cavitation Control

As the velocity decreases in the valve’s exit nozzle the pressure increases (or recovers) and the vapor bubbles collapse. This is known as cavitation.

Unlike tortuous path designs, DFT valves manage cavitation by the bubbles forming at the lowest pressure and highest velocity…the center of the fluid stream. The collapse is within the hydraulic barrier…

not on metal surfaces, which can destroy the valve.
Cracking of Guide Ribs is a Widespread Concern
- An issue which is becoming more prevalent in combined cycle power plant applications is cracking of the body guide ribs in Y-Globes due to the number of thermal cycles and thermal transient conditions
- Pacific’s guide rib design is such that the guides are located at 4, 8, 12 o’clock, outside of the flow path, providing a unique solution for combined cycle power plant applications

Features:
- Full-port, full flow body design enables best-in-class flow (C_v) and the lowest pressure drop in the industry
- Integral, hard-faced body guides provide consistent and accurate movement across the entire valve stroke
Is it the globe valve design or the seal gasket and packing which prevents leaks?

- A two year old power plant originally chose a competitor’s globe and gate valves. However, the Plant Engineering Department wasn’t satisfied with the valves. By October of that year the valves had pressure seal gasket and packing leaks, forcing the plant to replace the faulty valves.

Having used Conval’s CLAMPSEAL® globe valves at other power plants in the past, they turned to Conval. Their Conval sales representative informed them about the Conval Swivldisc® Gate valve; the valves were replaced and the problem was solved permanently.
Fuel Valves
Valve bypass eliminates liquid fuel nozzle coking

- **Coking Eliminated with JASC Solution- Schyler McElrath**
- JASC solutions for gas turbine back up liquid fuel systems are operating at better than 98% reliability and availability. As turbine efficiency continues to rise and combustion hardware maintenance intervals increase, fuel control technology must also continue to improve. Innovations such as the water cooled liquid fuel check valve, water cooled 3-way purge valve, combining valve and Smart Fluid Monitor were designed to provide options which are appropriate for any gas turbine system application or operational parameter.

- **Revision Date:** 6/2/2014
- **Tags:** 221112 - Fossil Fuel 化石燃料, Jansen’s Aircraft Systems Controls (JASC), Valve, Flow Control
Fuel control valves-

• **Woodward Supplies Gas Control Valves for Heavy Frame Gas Turbines**

• Woodward supplies gas control valves for heavy frame gas turbines. Fuel control valves are available in several sizes with either hydraulic or electric actuation. The integrated valve/actuator contains options for high-temperature applications, hydraulic or electric trips, and a variety of flow capacities. A separate valve is available to control the system fuel pressure upstream from the main control valves.

• **Revision Date:** 1/20/2014

• **Tags:** 221112 - Fossil Fuel 化石燃料, Woodward, Actuator, Valve, Flow Control
Materials
Better alloys being used in steam valves

- Materials used in the manufacture of steam turbine valve components have to withstand many stress cycles of steam flow, pressure and temperature changes. Operating pressures and temperatures have increased for new power plants in both subcritical and ultracritical units. Plant loads now go up and down continuously on a daily basis. Materials have to be reliable and resistant to oxidation, solid particle erosion (SPE) and be able to withstand excessive mechanical stresses for long periods of time. More plants are getting retrofitted with better alloy materials on their valves to extend inspection cycles.

- http://www.energy-tech.com/ram/article_ec2bd2c4-c1cb-11e4-8165-d39ac5fbbf38.html
9-12% martensitic popular but nickel alloys are expensive

- The 9 – 12 percent Cr martensitic alloy steels, were developed to match new boiler steam temperatures. Valve components such as stems and seats are greatly affected if the right alloys are not used. Nickel based alloys are promising to be adequate but are expensive. Valve heads, stems, seats and bushings should be oxidation resistant and also resistant to contact or sliding wear during operation. Weld deposition of thick layers of wear resistant material as an overlay coating for valve stems and bushings is a cheaper way to retrofit or repair existing valves.

- http://www.energy-tech.com/ram/article_ec2bd2c4-c1cb-11e4-8165-d39ac5fbbf38.html
Incolloy 901 for stems and bushings with stellite overlay

• trend for valve materials is to use nitride material, Incolloy 901, and nitrided 422 stainless steels for stems and bushings to reduce oxide scale build up. Boiler exfoliation from superheat and hot reheat tubes present a challenge to valves and often require that valve stems be equipped with nitrided materials and also chrome-carbide-coated materials. Stems can also have a Stellite weld overlay for protection. Wear and oxidation resistant materials are used in bushings because of the close tolerances between the stem and bushings.

• advantages of using Incolloy stems and Stellite bushings to reduce oxidation growth over time, compared to conventional 12Cr alloys currently used in valve parts.

• http://www.energy-tech.com/ram/article_ec2bd2c4-c1cb-11e4-8165-d39ac5fbbf38.html
coatings
Materials experts and niche knowledge

• Mutama K.R., Steam Turbine Valve Testing, Inspection and Maintenance to Avoid Turbine Overspeed Events; Proceedings of ASME 2011, Power2011-55150
• Special Metals Corporation; Product Handbook of High-Performance Alloys Part 1 pages 2-34.
• Specials Metals Corporation; Nimonic alloy 901
• Dr. Kuda R. Mutama Ph.D., is the engineering manager for TS Power Plant, part of Newmont Nevada Energy Investments, where he is responsible for plant technical
Thermal spray coatings for ball valves

- Metal seated ball valves are replacing globe, gate, angle, and plug valves as process streams continue to increase in both pressure and temperature.
- Praxair Surface Technologies offers a variety of thermal spray coatings that increase the life and improve the performance of metal seated ball valves. These wear-resistant coatings, which are applied to the mating surfaces of balls and seats, provide a solution to the wear issues facing ball valve manufacturers and users.
Velan Secureseal Valves employ hard coatings

- Hard coatings can address, galling, abrasion, erosion, spallation/debonding and fatigue
- Key properties are hardness, high temperature hardness, bond, porosity, toughness
- Applications are electroplating, PTA, HVOF, APS, and S&F, diffusion, CVD
- New coatings from Velan are an HVOF carbide coating that maintains hardness at 1000F which is suited for high cycle applications, a K-type nickel ased coating and V-type coating of tungsten carbide
- Two articles submitted by Luc on 6/3/2015 but not yet posted
Specific Issues and Evaluation Considerations
(Stellite Delamination)

- Stellite liberation from large valves installed in high-pressure (HP) and hot reheat (HRH) steam systems serving F-class combined cycles has emerged as an important industry concern. Tight shutoff of parallel-slide gate and non-return globe valves has been compromised in some cases, based on feedback from plant personnel; steam-turbine components also have been damaged.

- EPRI has established a committee on “Cracking and Disbonding of Hardfacing Alloys in Combined-Cycle Plant Valves” to dig into the details. The work, funded by several sponsors, began early this year. John Shingledecker (jshingledecker@epri.com), the technical manager for this program, said the project timeline is estimated at 14 months. The first formal review of industry experience is incorporated into the program for the upcoming EPRI Fossil Materials and Repair Program Technology Transfer Week, June 24-28, in Destin, Fla.

- Owner/operators, valve manufacturers and service organizations, and other interested parties expect one outcome of the R&D effort will be a more reliable process for the bonding of stellite to discs, seats, and slides for valves subjected to steam temperatures approaching 1100F, as well as to rapid quenching caused by improperly operating desuperheaters and/or drain systems. The solution also may require changes to current industry inspection, operating, and maintenance procedures.
Steam valve stellite delamination

- **NV Energy Coping with Stellite Delamination**
- CCJ editors participated in a round table with NV Energy personnel to discuss the first gas-turbine major inspection at its Walter M Higgins Generating Station. Higgins is a 2 x 1 combined cycle powered by 501FD2 gas turbines from Siemens Energy Inc. The roundtable covered a number of issues including large steam valves.
- **Revision Date:** 2/11/2014
- **Tags:** 221112 - Fossil Fuel 化石燃料, NV Energy, Siemens, Valve, Gas Turbine, Delamination, Flow Control, Combined Cycle Journal, USA
Actuators
Selecting hydraulic actuators instead of pneumatic actuators for critical desuperheating valve applications is one way to address cycling-related problems. Since oil is incompressible, performing the same response calculations as before, but this time for a hydraulic actuator, yields much better results: a dead time of just 0.00164 seconds and piston jumps in increments of just 0.00423, or 0.0564% of span.

Switching from pneumatic to hydraulic actuators virtually eliminates the lag in response to a control signal change and reduces jump to an insignificant level. Hydraulic actuation systems can be tuned for very fine setpoint control (down to 0.1% of span). In general, they feature very fast stroking speeds, 100% duty modulating service, unparalleled frequency response (millisecond dead times), immunity to dynamic instability and friction, and almost immeasurable overshoot.

But there are downsides to going with hydraulic actuators. Conventional hydraulic actuators have a reputation for being maintenance and reliability nightmares, and they cost much more than their pneumatic cousins. What’s more, hydraulic systems require motors to run 24 hours a day, as well as an extensive network of very high pressure hydraulic tubing and fittings that may leak. Plant owners and builders tend to avoid hydraulic systems for those reasons, preferring instead to specify advanced pneumatic positioner technology, regardless of its performance limitations.

http://www.powermag.com/desuperheating-valves-take-the-heat/
Pneumatic or hydraulic for HRH
(Boiler Feed, HRSG, Turbine, Condenser, Flue gas, other systems)

Pneumatic or Hydraulic actuators for hot reheat bypass valves

Selecting hydraulic actuators instead of pneumatic actuators for critical desuperheating valve applications is one way to address cycling-related problems. Since oil is incompressible, performing the same response calculations as before, but this time for a hydraulic actuator, yields much better results: a dead time of just 0.00164 seconds and piston jumps in increments of just 0.00423, or 0.0564% of span.

Switching from pneumatic to hydraulic actuators virtually eliminates the lag in response to a control signal change and reduces jump to an insignificant level. Hydraulic actuation systems can be tuned for very fine setpoint control (down to 0.1% of span). In general, they feature very fast stroking speeds, 100% duty modulating service, unparalleled frequency response (millisecond dead times), immunity to dynamic instability and friction, and almost immeasurable overshoot.

But there are downsides to going with hydraulic actuators. Conventional hydraulic actuators have a reputation for being maintenance and reliability nightmares, and they cost much more than their pneumatic cousins. What’s more, hydraulic systems require motors to run 24 hours a day, as well as an extensive network of very high pressure hydraulic tubing and fittings that may leak. Plant owners and builders tend to avoid hydraulic systems for those reasons, preferring instead to specify advanced pneumatic positioner technology, regardless of its performance limitations.
Electric Actuators

- Electric Actuators
- Rotork has a line of all-electric, compact modulating actuators known as the Continuous Duty Modulating Failsafe Electric Actuator. The Rotork CVA is suited for almost all linear, quarter-turn control valve applications requiring precise position control and continuous modulation.
- The electric actuator features a failsafe function, allowing the operator to program the actuator to lock in one of four positions if there is a loss of power.
- The CVA does not require the infrastructure (piping/tubing to distribute compressed air) needed to operate a pneumatic actuator. What's more, it is significantly more accurate, Kundin said.
- The move toward electric actuators has led to the creation of more digital networks for controlling these types of actuators. But the transition has been slow
Pneumatic and Hydraulic Actuators

- Pneumatic Actuators
 - While many pneumatic actuators have remained unchanged, except for the addition of smart positioners, there have been some new innovations in pneumatic actuation. A number of piston and rotary actuators have been creeping into power plants, which primarily have used diaphragm actuators on control valves.
 - Pneumatic actuators equipped with smart positioners now functionally compete with electric actuators in terms of fail-in-position operation on loss of signal at significantly less cost.
- Hydraulic Actuators
 - Hydraulic actuators are increasingly popular because of their ability to achieve high torque. Some companies offer a linear actuator that can be modified for rotary action through a gearbox. The device has been around for more than a decade and offers a digitally stepped servomotor pump to provide higher positioning accuracy than pneumatic actuators.
 - Hydraulic actuators have even been used to position small turbine control valves. The actuator is connected to a nearby smart programmable electronic box with an umbilical cable. Configuration and calibration is made easy through this box, which can be mounted away from the process for convenient access.
Acuators- hydraulic failure

• The valve actuator is essential in operating steam turbine valves. The valve control function is part of the D-EHC control system. Modern actuators use electrohydraulic control (EHC) oil from a skid at a pressure of approximately 2,400 psi supplied to the actuator spring with a servo mechanism and LVDT for valve position

• Some power plants are reporting premature failure of valve actuators. In order for a valve to completely shut, three things have to function properly to stop the flow of steam to the turbine to prevent an overspeed event. (i) The valve trip mechanism has to work properly, regardless of whether it is mechanical or digital. (ii) The valve stem should not stick to the bushings and should seat properly to shut off steam flow completely. (iii) The actuator has to function properly to allow proper movement or stroke of the valve stem to seat the valve disc to the seat completely.

• http://www.energy-tech.com/ram/article_ec2bd2c4-c1cb-11e4-8165-d39ac5fbbf38.html
Actuator spring disc failure

- Valve actuators should last at least four to five years before any major maintenance becomes necessary. During a scheduled annual overspeed test in 2012 at TS Power Plant the MSV valve failed to close, even though the turbine had tripped. The MSV valve was at 23 percent open following the turbine trip, then went down to 8.1 percent open after more than 24 hours (Figures 6 and 7). The CV and the RSV/IV shut the flow of steam completely and prevented the turbine from spinning out of control. A review of the historical operating data going back six months revealed that the MSV had not been closing completely during the previous trips. In all cases, the CV prevented the turbine from overspeeding. It was discovered that the MSV actuator had spring discs that had completely rusted or corroded, causing the actuator to fail, as shown in Figure 8. The MSV actuator was later rebuilt. This was a very close call for the plant. The lesson from this is to inspect actuators at the time of valve inspection, even though there might not be any sign of trouble. Many plants are now on an aggressive rebuilding schedule to avoid incidences like this

- http://www.energy-tech.com/ram/article_ec2bd2c4-c1cb-11e4-8165-d39ac5fbbf38.html
Young and Franklin replaces hydraulic with electric actuator

- advances in the design and manufacturability of electrically powered actuators have allowed for the replacement of hydraulically actuated control valves and guide vanes on heavy duty class combustion turbines. Asset owners and operators benefit from reduced life cycle cost, improved component reliability, and in many cases interrelated components can be eliminated, thereby improving system reliability.

- The hydraulic valve product is mature, but to ensure their reliability frequent maintenance must be performed on a 24,000 hour cycle minimum. Lack of maintenance causes unpredictable control performance such as start-fails, forced trips, trips during controlled shutdowns and loss of flame during transitions. Hydraulic oil leaks of worn seals and vulnerable fittings create slip and fire hazards. On-site work includes messy filter changes, replacement of lube-oil varnish plagued servos and safety trip relays, unverified adjustment of valve stem packings, and re-calibration. Off-site work is typically a time-zero overhaul of the valve and actuator at 48,000 hour intervals.

- Y&F set out to develop the EMA (electric motor actuator) product line with asset owners and operators in mind. Specifications were based on real world duty cycles, operating conditions and owner/operator inputs while meeting or exceeding original equipment performance metrics. Development testing was based on the most stringent requirement of each category. All products were designed to fit into the same envelope or smaller than existing hydraulic products and are suitable for many OEM turbine makes. Retrofit projects can be completed within typical outage duration with minimal on-site modifications required.

- The Y&F EMA product line is designed for a 96,000 hour time-zero overhaul cycle.

- Owner/operators benefit from improved reliability and realize maintenance budget gains by eliminating the recurring costs associated with lube oil powered hydraulic actuators.