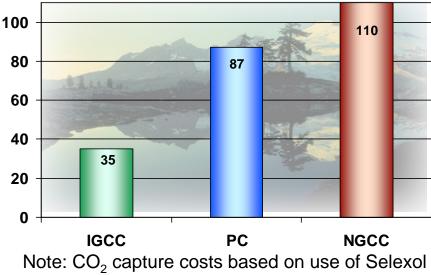


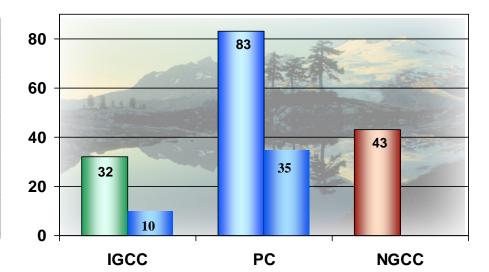
NATIONAL ENERGY TECHNOLOGY LABORATORY

Carbon Capture for Pulverized-Coal-Based Power Plants: DOE/NETL's R&D Program

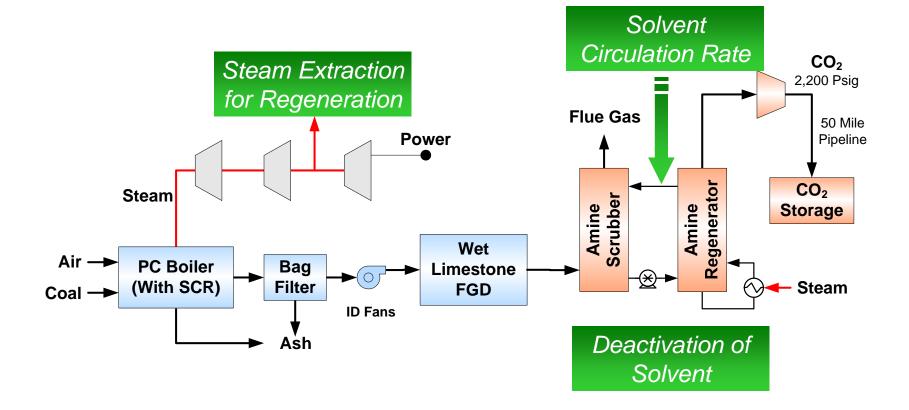

McIlvaine Webcast October 2, 2008

Cost Estimates for Current CO₂ Capture Technology

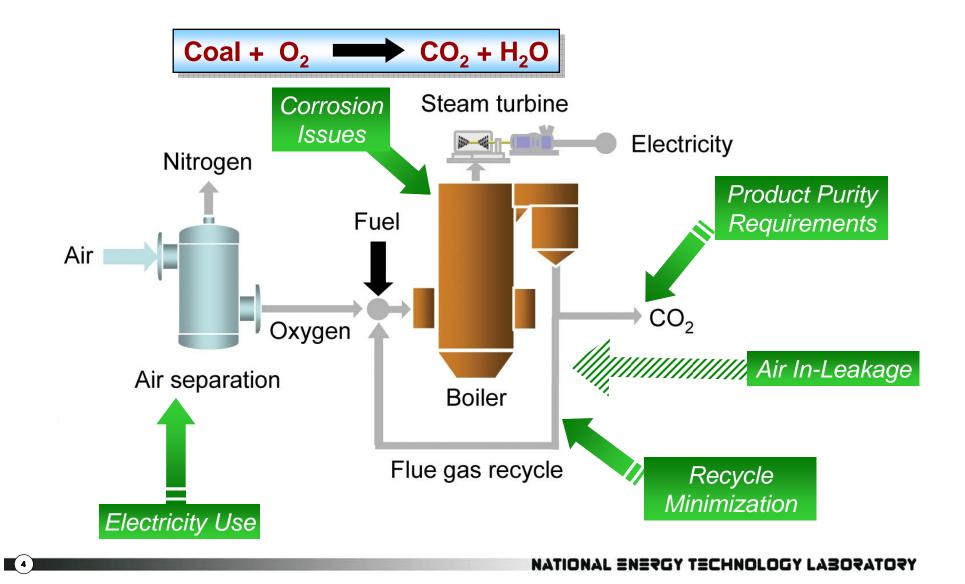
- 5–30% parasitic energy loss
- 35–110% increase in capital cost
- 30–80% increase in cost of electricity


Effect of CO₂ Capture on Capital Cost (% Increase Resulting From CO₂ Capture)

process for IGCC and MEA for PC and NGCC.


2

Effect of CO₂ Capture on Cost of Electricity (% Increase Resulting From CO₂ Capture)


Source: Cost and Performance Baseline for Fossil Energy Power Plants study, Volume 1: Bituminous Coal and Natural Gas to Electricity; NETL, May 2007.

Post-Combustion Current Technology *Pulverized Coal Power Plant with CO*₂ *Scrubbing*

3

Pulverized Coal Oxycombustion

CO₂ Emissions Control R&D Activities

- Post-Combustion CO₂ Control
- Oxy-Combustion CO₂ Control
 - Chemical looping
- CO₂ Compression
- CO₂ Beneficial Use
- In-house R&D

5

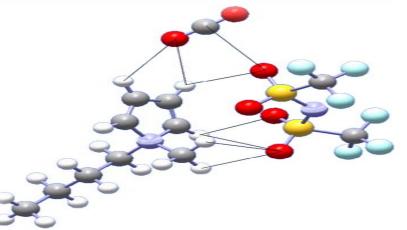
• Systems Analysis

Carbon Capture Research Pathways Solvents

Process Description

Chemical - Reversible chemical reaction (s) between CO₂ and aqueous absorbent solution

Physical - Bulk phenomenon where liquids absorb a gaseous species from a gas mixture.


Mature technology (MEA) at smaller scale

External Research Projects

- ✓ Ionic Liquids Notre Dame
- ✓ Novel Oligomers GE Global Research
- ✓ Reversible Ionic Liquids Ga Tech
- ✓ Novel Integrated Vacuum Carbonate Absorption
 Process ISGS

Key Technology Challenges

- CO₂ Loading
- Regeneration Energy
- Solvent Deactivation

Carbon Capture Research Pathways Sorbents

Process Description

- Chemical adsorption involves bonding with a solid sorbent
- Physical adsorption of CO₂ on solid adsorbents by weak surface forces
 Adsorption capacity increases with CO₂ partial pressure
- Low moisture content reduces regeneration steam requirements
- Regeneration via TSA or PSA

External Research Projects

- ✓ Dry Regenerable Sorbents RTI
- ✓ Metal Organic Frameworks UOP
- ✓ Solid Sorbents ADA-ES
- ✓ Novel Carbon Sorbents SRI International
- ✓ Low-cost Solid Sorbents ISGS

Key Technology Challenges

- CO₂ Loading
- Heat Management
- Attrition/Blinding
- Solids Handling

Carbon Capture Research Pathways Membranes

Process Description

- \succ Diffusion via a physical or chemical interaction between the membrane and CO₂
- Selectivity and permeability are key

External Research Projects

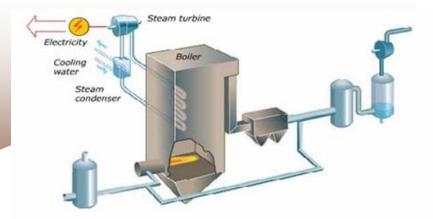
- ✓ Enzymatic membranes Carbozyme
- ✓ Novel fluorinated polymer membranes RTI
- Polymer membranes with integrated application
 MTR

Research Focus

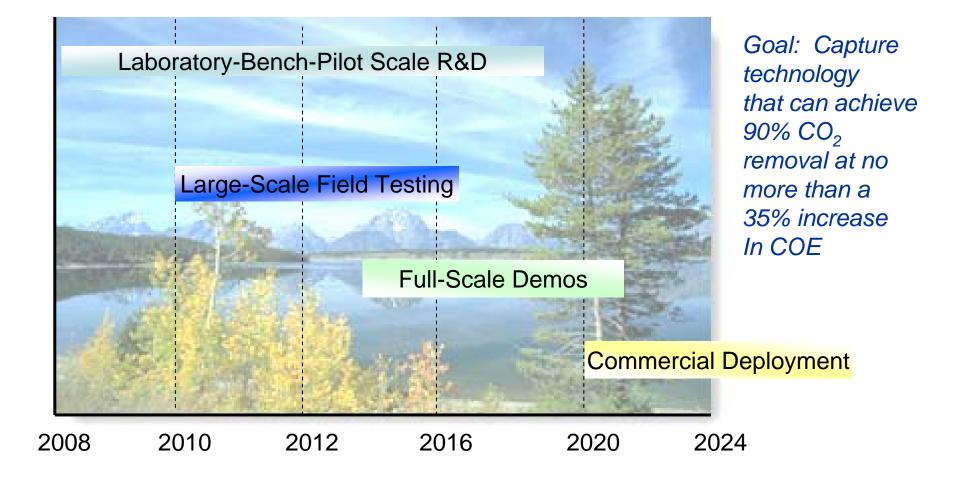
- Area Requirements
 - Permeability/Selectivity
- Energy for Driving Force
- Flue Gas Contaminants

Carbon Capture Research Pathways Advanced Oxycombustion Technologies

Process Description


- \triangleright Combustion in pure O₂ to produce flue gas that is comprised of H₂O and CO₂
- > CO₂ separation via H₂O condensation

External Research Projects


- ✓ Oxycombustion Retrofit B&W, Southern Research, Jupiter
- ✓ Oxygen Transport Membranes Praxair
- ✓ Flue gas purification Air Products, Praxair
- ✓ Tangentially Fired Alstom
- Oxycombustion corrosion issues Foster Wheeler
- Multi-scale oxycombustion with model development – REI
- Chemical Looping Ohio State, Alstom

Potential Technology Solutions

- Oxygen Production Cost
- Product CO₂ Purity
- ✤ Retrofit Assurance

CO₂ Capture Technology RD&D Timeline

NATIONAL ENERGY TECHNOLOGY LABORATORY

10