

Radar level measurement for the wastewater industry

VEGA Americas Inc. Steve McCuskey Municipal Industry Specialist – North America

VEGA contact info: 513-272-0131

Presentation Overview

My goals for the next 1,200 seconds...

Keep you awake

not bore you with 60 years of company history
 not discuss things that don't help you solve

problems

- We're here to solve problems...

Presentation Overview

Lift stations/Wet wells

Open channel flow

Chemical storage tanks

Bar screens / plant headworks

i...and the problems people relate to those applications.

Level Measurement Technologies For Wastewater

Bubbler

Hydrostatic Pressure

Ultrasonic

Solar Influence

Side By Side Comparison

Wind Influence

Sediment Build-Up

Foam Influence

Gas Layer Influence

Ice Influence

Fog Influence

Ultrasonic vs Radar

Ultrasonic

- Sound wave
- Needs a carrier to propagate

Radar Principle of Operation

A microwave pulse is emitted, reflected off the product and received

- Each pulse has a length of 0.5 nanoseconds
- A new pulse is emitted every 280 nanoseconds (3.6 million pulses per second
- Time of Flight Measurement
 - Distance = Rate x Time

Ultrasonic vs Radar

Radar

Beam angle:

- 4 22 deg
- Accuracy: +/- 2mm
- Temperature change from 0 to 2,000 deg C: 0.026% error
- Change from Air to Methane:
 0.0122% error

Lift Station/Wet Wells – Hydrostatic Pressure

Lift Station/Wet Wells – Radar

Non-contact

Not susceptible to 'in-air' interferences such as foam and fog (condensed water vapor)

Lift Stations / Wet Wells

FOG Package

- High degree of reliability
- FOG layer information
- Measurement redundancy

Lift Stations / Wet Wells

Lift Stations / Wet Wells

Open Chanel Flow

 Unaffected by temperature, wind, and weather

 Common flow algorithms built into sensor, making controller/display optional

Open Chanel Flow

 Unaffected by temperature, wind, and weather

Common flow algorithms built into sensor, making controller/display optional

Bar Screens

- Small measuring ranges
- Unaffected by condensation
- Reliable measurement even with foam generation

Chemical Storage Tanks

- Non-intrusive measurement for plastic tanks
- Radar signal cuts through condensation and foam within tank

Chemical Storage Tanks

Other Key Applications

EQ Tanks

- Sludge Tanks
- Clarifier Scum Pits
- Splitter Box Weirs

Any Questions?

