2013 Dry Scrubber Users Association

Scrubber Optimization Project Principles, Actions and Results

Logan Generating Plant

Swedesboro, NJ

John Kersch, PE Maintenance Manager

Plant Overview

- Commercial Operation September 1994
- 245 MW Westinghouse Turbine
- Foster Wheeler Boiler burning Pulverized Coal
- ABB supplied scrubber, extensively modified by owner since startup
- Original design <1.5% sulfur, present operation at 2.0% with successful tests at 2.5%
- Permitted SO2 emission: 3 hour avg. = 75 ppm, 30 day average = 61 ppm.

Plant Overview

Current operation is mostly up/down on load with frequent transient conditions

Plant Overview

Plant Overview

• Calcium to Sulfur Ratio in 2012 was 1.23, better than average for dry scrubbers...

Joint Venture Optimization (JVO) Project

Agreement signed April, 2012

Purpose: Optimize Scrubber Performance **Goals:**

- Reduce Ca/S Ratio from 1.23 to 1.00
- Reduce combined expenditure for lime supply and flyash disposal by \$ 1.00 / ton of coal, approximately equal to \$0.50 / MW-hr
- At 50% capacity factor, projected operating cost savings = \$400,000 per year

Joint Venture Optimization **Principles**

Both Parties Bring Value to the Table

Joint Venture Optimization Actions & Results

1. FGD Performance Optimization Training

Goal: Discuss goals, plan and expected results with all Ops personnel. Completed May 2012

Joint Venture Optimization Actions & Results

2. Improve SDA Outlet Temperature Stability

SO2 CONTROL AL	JGUST 20 ⁻	12 , STD	. DEV.	= 1 °	۶F			
250 180	mile when any por	mb - +++++++++++++++++++++++++++++++++	~~~~\					
230	parrel		My mutuly					
100								
170				1				
150								
and the produced from the balance of the barren of the product of the barren of the second second second second	When all a summitted and	والألدار والدرون أأوار والالغان	. An CARLAND . A.	dia June dia mandal	http://www.		alide large ber	
ing hills and sufficient advants of statistic distances and identify a sufficient of the sufficient of	L THE WALL REPORT OF THE REAL PROPERTY OF			IP V Manaakey	APANAY ANA ANA ANA ANA ANA ANA ANA ANA ANA	and the second start	Adjoint Colorana	- and the
				1				
70				h				
50 150 8/5/2012 4:48:00 AM		24.00 hours					8/6/2012 4.4	8·00 AM
◆ GENERATOR WATT (GROSS)		24.00 10013					-01012012 4.4	0.00 /101

Joint Venture Optimization Actions & Results

2. Improve SDA Outlet Temperature Stability - Modified Thermocouple/Logic changes/Tuning

Joint Venture Optimization Actions & Results

3. Improve SO2 Control and Optimize Setpoint

SO2 CONTROL	(OCTOBER 2	2012	PERMIT LIMT =	75 PPM
75 75					
60 60		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
50 40 SE	TPOINT = 65	5 PPM A	CTUAL AV	G = 64 PPM	
30					
20					
10					
0 0					
9/27/2012 2:24:00 PM		6.00 days		10	/3/2012 2:24:00 PM
SO2 EMISSION PPM - 3 HR ROLLING					

LOGAN GENERATING PLANT Joint Venture Optimization Actions & Results 4. Measure & Control Approach Temperature

Joint Venture Optimization Actions & Results

Logan Generating Plant

FGD SYSTEM CORROSION COUPON ANALYSIS RESULTS

	Coupon Removal Date								
Location	2-Aug-12	14-Aug-12	2-0ct-12	16-Nov-12	17-Dec-12	26-Dec-12	6-Feb-13	5-Apr-13	26-Jun-13
Reactor A Outlet	6.8			2.9	1.6	1.6	2.9	1.5	7.4
Reactor B Outlet	9.4			4.2	2.6	1.2	4.4	5.6	20.7
Baghouse- B, Top	11.9		30.0	2.7	1.0	0.5	1.3	1.4	8.9
Baghouse- B, Bottom	5.0		11.0	1.8	0.6	0.4	0.3	0.2	2.3
Baghouse- M Top		8.8	6.5	1.6	2.3	0.7	3.5	4.4	8.5
Baghouse -M Bottom		9.1	16.0	1.9	0.3	0.2	0.7	0.5	5.9
Baghouse Outlet	4.5		18.0	3.7	6.1	6.7	13.1	5.8	16.7
Average Corrosion (mils/yr)	7.5	9.0	16.3	2.7	2.1	1.6	3.7	2.8	10.0
3 Period Weighted Moving Avg. (mils/yr)			10.6	9.4	8.6	8.4	7.8	7.1	7.4
CI from Coal (lb/hr)	55	57	58	61	54	65	55	56	60
CI from Brine (lb/hr)	47	49	54	43	43	44	44	41	51
Total CI in (lb/hr)	103	106	111	104	97	109	99	97	111
Total CI in (Ib/ton coal)	2.6	2.6	2.7	2.4	2.5	2.4	2.5	2.4	2.6
Average Approach Temp (F)	49	48	53	57	48	44	43	40	37
Approx. Cap. Factor (%)	43	45	45	48	42	51	43	44	47

LEGEND	
Color	
Legend	
(mils/yr)	% Rank
1.0	66%
2.0	80%
	0070
4.0	90%

Joint Venture Optimization Actions & Results

Joint Venture Optimization Actions & Results

LOGAN GENERATING PLANT Joint Venture Optimization Actions & Results 4. Measure & Control Approach Temperature • CORROSION COUPON FLUE GAS

ID

FAN

SDA Outlet Dewpoint Temperature Transmitter (Patent Pending)

BAGHOUSE

FLYASH

SPRAY DRY

ABSORBER

INLET

FLUE GAS DP TEMP

> HE-V5 HARSH ENVIRONMENT HUMIDITY ANALYZER

CONSTRUCTION OF THE OWNER

STACK

Joint Venture Optimization Actions & Results

4. Measure & Control Approach Temperature

TYPICAL TRANSIENT LOAD PROFILE

Joint Venture Optimization Actions & Results

4. Measure & Control Approach Temperature

DEWPOINT VARIES CONTINUOUSLY 5-20 °F

Joint Venture Optimization Actions & Results

4. Measure & Control Approach Temperature

INDIVIDUAL SDA OUTLET DEWPOINTS VARY DIFFERENTLY

Joint Venture Optimization Actions & Results

4. Measure & Control Approach Temperature

AFTER: APPROACH TEMP CONSTANT +/- 1°F PRECISION

Joint Venture Optimization Actions & Results

Joint Venture Optimization Actions & Results

5. Reduce Ambient Air Inleakage

Joint Venture Optimization Actions & Results

Joint Venture Optimization Actions & Results

Joint Venture Optimization Actions & Results

5. Reduce Ambient Air Inleakage - Flue Gas Recirculation Duct

Joint Venture Optimization Actions & Results

5. Reduce Ambient Air Inleakage - Flue Gas Recirculation Duct

Joint Venture Optimization LOGAN GENERATING **Actions & Results PLANT** 6. Optimize Performance (Ongoing 3 yrs) CORROSION LIME + FLYASH COST COST CORROSION COST LIME + FLYASH COST COST **COMBINED COST** ഗ **OPTIMUM TOO HIGH TOO LOW**

APPROACH TEMP

Joint Venture Optimization Actions & Results

Dec 2012 Performance Test Results

ALL GOOD – <u>PROVIDED THAT</u> INCREMENTAL CORROSION IS LESS THAN \$492,000 /YEAR \$1.55 / TON REDUCTION

But wait, there's more:

- December 2012: Mandatory reduction of SO2 emission limits take effect per NJDEP RACT. The limiting parameter decreases from 75 ppm to 61 ppm.
- January 2013: New coal supplier, % sulfur increases from 1.2% to 2.0%, with potential up to 2.5% in 2013.
- The plant was designed and permitted for a maximum of 1.5% Sulfur. To change the permit, NJDEP required compliance to be demonstrated at full load at 2.0% and 2.5% sulfur
- The highest sulfur reported by any U.S. dry scrubber was 2.1%. Some said 2.5% couldn't be done....

Joint Venture Optimization Actions & Results

...however:

• On February 11, 2013 Logan successfully achieved full load operation (237 MW gross) with 2.54% coal in compliance with permitted emission limits on a limited test basis.

Joint Venture Optimization Operational Issues

- Running both Slakers to meet 2.5% sulfur scrubbing demands
- Running multiple Filtered Water pumps to meet capacity for slaking
- Needed larger capacity slaking water heater for winter operation and increased slaking water flow
- Temporary modifications to Recycle Ash system to replace brine water with lime slurry
- Flyash disposal volume and moisture %
- Extended run times on 2.5% sulfur coal at full load (Only three 2 hour tests completed)

Joint Venture Optimization Actions & Results

Joint Venture Optimization Actions & Results

Joint Venture Optimization Actions & Results

2013 Performance

- Capacity Factor 32%
- Calcium/Sulfur Ratio 1.28%
- Average Sulfur 1.76%
- Operating Savings through 2Q \$174,000
- Scrubber Operating at 35F Approach Temperature and a 60 ppm set point for SO2

Joint Venture Optimization Critical Success Factors

- Senior Management Sponsorship (NAES/PPMS)
- Shared Risk / Shared Reward All Parties
- Clear, measurable goals
- Everybody on board from Day 1 (training) with opportunities to contribute
- Team Leader Inside, Authorized & Available
- New Technology FGR and HE-V5

•Questions?