

Cooling Options for Power Plants

COOLING TECHNOLOGIES

© 2014 SPX Cooling Technologies Inc.

SPX.

Cooling Options for Power Plants

SPX.

Depending on site needs, there are a wide range of cooling solutions

Water Savings Options – Alternatives to Wet Evaporative

SPX.

	All wet with high cycles of conc.	<u>Wet/Dry</u> Coil Type	<u>Options</u> ClearSky	Parallel Condensing	Air Cooled Condensing
Estimated Water Savings	0-10%	10-30%+	10-30%+	30-90%*	100%
Other Pros and Cons	 + Relatively low up front costs + Highest power cycle efficiency + Lowest parasitic power + Smallest footprint - Most water usage 	 + Plume abatement - No back-to- back layout - Higher pump head and fan power - Coil, damper and valve maintenance 	 + Plume abatement + Matches wet cooling cycle efficiency + Matches wet pump head + Smaller footprint than dry or parallel - Higher fan power 	 + Flexible water savings + Lower cost, power use, footprint vs dry + Retrofit is possible - Highest complexity - May still plume - Cost, power, footprint 	 + No water or treatment costs - Highest backpressure - Highest upfront cost - Largest footprint - Lowest cycle efficiency - Cannot be retrofit

Auxiliary Power Usage

Backpressure

Different options require different amounts of water

* Parallel condensing theoretically can reach any water savings required between 0-100%

Water Losses in a Evaporative Cooling Tower

Example, 800 mW CC Plant*

- Evaporation ~1% of the flow rate per 10° F range
- Blowdown Portion of circulating water purged to control cycles of concentration
- Drift Drops entrained in exhaust air, approx 0.001% of flow
- Makeup Water required to replace system losses

Making up ~ 6.7 MGD ~ 2.7% of circulating rate of 253 MGD

* 1/3 steam condensing: 176,000 gpm circulating with 20°F range, 4 cycles of concentration

Makeup water = Evaporation + Drift + Blowdown

SPX.

ModuleAir[™] ACC

- Modularization of Components
- Shop assembled bundles including steam manifold and condensate headers
- Site welding reduced
- Integrated Structures
 Fan bridge/plenum/bundle
- Shop assembled steel trusses
 Sized for container transport
- Reduced field-assembly hours

Modular concept featuring SRC® fin tube technology

EPA 316(b) Final Ruling – Key Provisions

- An estimated 1,065 facilities are impacted by impingement standards (> 2 MGD water usage)
- Best Technology Available (BTA) required as determined by EPA Director on a case-by-case basis.
- Facilities with >125 MGD withdrawal must conduct Entrainment Characterization Study
- New units at existing facilities must either:
 - 1. Reduce actual intake flow to that commensurate with closed cycle systems
 - 2. Design intake screen systems to achieve > 90% of entrainment reduction of closed cycle systems
- Existing facilities must comply as NPDES permits are renewed:
 - If > NPDES renewal is >42 months from date of final ruling, full compliance is required.
 - If < 42 months to renewal date, interim BTA requirement to apply based on Director's Best Professional Judgement.

Information Source: EPA Fact Sheet 821-F-14-001 May 2014

Final Ruling Issued in May, 2014

SPX.

Questions?

Paul Lindahl Director, Market Development SPX Thermal Equipment & Services paul.lindahl@spx.com 913-664-7588

Ramasamy Sithambaram Sales Manager – Dry Cooling SPX Cooling Technologies ramasamy.sithambaram@spx.com 913-664-7528

Kent Martens Chief Technical Advisor SPX Cooling Technologies <u>kent.martens@spx.com</u> 913-664-7501

Counterflow Cooling Tower

Evaporative, back-to-back configuration

Wet Dry Cooling Towers

Counterflow Wet Dry Cooling Tower

Air Cooled Condensers

ACC design minimizes water usage