

# Field Testing and Independent Review of Post-Combustion CO<sub>2</sub> Capture Technology

Presented by Phil Boyle, President and COO, Powerspan Corp. *McIlvaine Company, Carbon Management Strategies & Technologies Webinar, June 24, 2010* 

## **Description of ECO<sub>2</sub>® Technology**

- 90% CO<sub>2</sub> capture using absorption-regeneration process
- Packed-bed absorption tower, similar but smaller regeneration tower
- Uses proprietary solvent, but chemicals are readily available
- Solvent is stable from both thermal and oxidative degradation
- Tolerant of higher levels of SO<sub>2</sub> (40+ ppm); in many cases obviates need for a polishing scrubber
- Relatively low energy of regeneration extraction steam heat less than 1000 BTU/lb of  $CO_2$
- No interaction with Powerspan's SO<sub>2</sub> removal technology; can be installed after conventional SO<sub>2</sub> scrubbers



### **ECO<sub>2</sub> Process Flow Diagram**





## **ECO<sub>2</sub> Pilot Plant**

- At FirstEnergy's R.E. Burger Plant in Southeastern Ohio
- 1 MW capacity, 20 tons CO<sub>2</sub>/day
- CO<sub>2</sub> capture >90% with 11-12% CO<sub>2</sub> in inlet gas
- Constructed using commercial equipment
- Designed to evaluate performance and economics for scale-up
- Demonstrates process performance and control under varying, real world plant operating conditions
- Initial flue gas flow December 2008





## **ECO<sub>2</sub> Pilot Performance Test Results**

- >90% CO<sub>2</sub> removal at full system flow
- Regeneration energy provided by extraction steam: 1,000 Btu/lb of CO<sub>2</sub>
- Product gas meets Kinder-Morgan pipeline standards for concentration
  - O<sub>2</sub>: 8 ppmv, H<sub>2</sub>O: 16 ppmv, SO<sub>2</sub>: <0.02 ppmv, H<sub>2</sub>S: <0.5 ppmv</li>
  - Hydrocarbons: <0.5%, N<sub>2</sub> <0.05%</li>





## **Background of Independent Assessment**

- Independent review of Powerspan's ECO<sub>2</sub> carbon capture process
- Two-part study
  - Validate pilot design, operation, and performance
  - Assess commercial scale-up potential based on pilot results
- Selection of WorleyParsons
  - Worldwide experience in power, oil and gas, and chemical process industries
  - Supported USDOE NETL's Baseline Study of CO<sub>2</sub> capture technologies / costs
  - Commissioned by the Global CCS Institute to participate in strategic analysis of global status of CCS and CO<sub>2</sub> capture technologies



## **Approach to Pilot Assessment**

- Study Objectives
  - Determine if the ECO<sub>2</sub> pilot is designed and constructed in such a way that it is a good representation of a large-scale ECO<sub>2</sub> unit (200 MW and higher)
  - Determine if the ECO<sub>2</sub> pilot is instrumented and operated in such a way as to produce reliable and meaningful results for the specification and design of a large-scale commercial unit
- Methodology
  - Visited, inspected, and observed operations of the ECO<sub>2</sub> pilot at FirstEnergy's R.E. Burger Plant in Ohio
  - Verified installation and operations per PFD, P&IDs, and operating procedures, including instrumentation calibrations and cross-checks
  - Counter-checked information on process and design using sources available in the public domain
  - Evaluated scale-up for the major equipment



#### **Conclusions of Pilot Assessment**

- Concluded that the ECO<sub>2</sub> pilot has demonstrated a reliable CO<sub>2</sub> capture process
- Verified that the pilot is constructed and operated as was intended
- Determined that the pilot is a good representation of the ECO<sub>2</sub> process
- Confirmed that the pilot data provide a sound basis for scale-up to commercial size units



## **Approach to Commercial Assessment**

- Assess the performance and cost implications of scale-up and retrofit of the ECO<sub>2</sub> technology to commercial power plants (200 MW and greater)
- Selected 220 MW<sub>net</sub> (234 MW<sub>gross</sub>) with subcritical steam cycle
- CO<sub>2</sub> intensity of 1.14 tons of CO<sub>2</sub>/MWh; 1.68 Mtons of CO<sub>2</sub>/year
- Analyzed impact of ECO<sub>2</sub> process to the following plant systems:
  - Flue gas system
  - Steam and condensate system (using WorleyParsons in-house simulation models)
  - Circulating water cooling system
  - Water supply and treatment
  - Electrical system
  - Data acquisition and control
- Analyzed impact on maintenance and reliability



## **Conclusions of Commercial Assessment**

- The ECO<sub>2</sub> technology is read for scale-up to 200+ MW units
- Economic analysis included:
  - Capital levelized over 20 years
  - Impact of added electrical load (33,470 kW, includes compression of CO<sub>2</sub> to 2200 psig) valued at \$50/MWh
  - Impact of lost generation due to steam extraction (31,800 kW) valued at \$50/MWh
  - Consumables
  - Maintenance and labor

#### Total Cost of CO<sub>2</sub> Captured: \$36.61/ton of CO<sub>2</sub>



(Selling Price of Electricity: \$50.00/MWh)



## **Cost Drivers**

- Capital cost contribution impacted by financing assumptions
- Use cost of power to evaluate lost generation and parasitic load increase (View as plant "selling" power to ECO<sub>2</sub> process)
- Value assigned to power has significant impact on \$/ton result 68% of operating cost is proportional to power cost
- Plant impact in terms of lost generation strongly affected by carbon intensity. Reference plant at 1.14 tons of CO<sub>2</sub>/MWh. Many existing plants at 1.0 to 1.1 tons of CO<sub>2</sub>/MWh. New SCPC may be as low as 0.89 tons of CO<sub>2</sub>/MWh.
- The study's reference plant had reduced net output of 30%; Powerspan estimates this would be 18% for a USCPC unit at 0.77 tons of CO<sub>2</sub>/MWh



#### **Contact Information**

Phil Boyle President and COO Powerspan Corp. pboyle@powerspan.com <u>www.powerspan.com</u>

