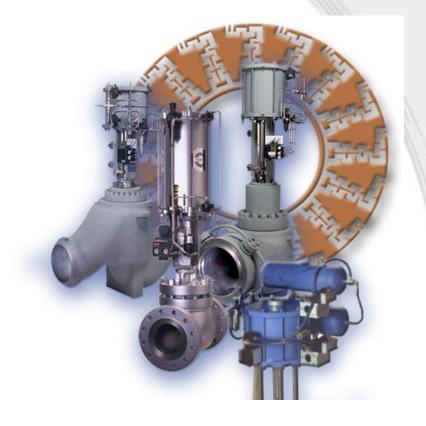


# **Severe Service Control Valves**



# Ory Selzer Valve Doctor, Power – Americas ods@ccivalve.com

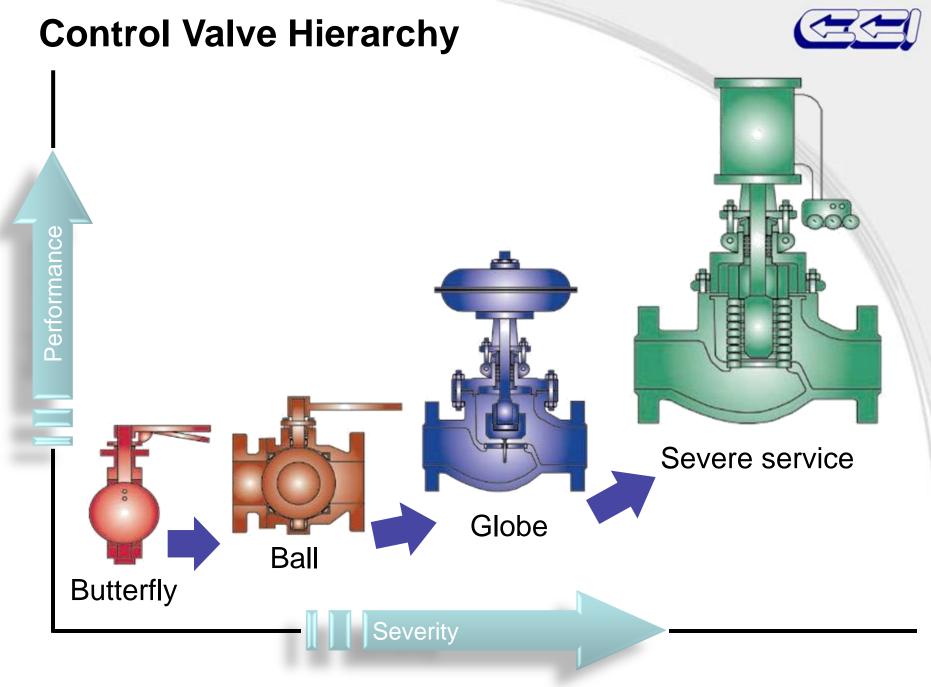
# **Today's Seminar**


Introduction - CCI

Severe Service Applications

- Control valve hierarchy
- Definition of severe service
- Common applications
- Some Key Parameters
- Severe Service Trim Designs

≻Q&A






# **Introduction - CCI**



| Founded in 1961 in Southern California                              | (DRAG)           |
|---------------------------------------------------------------------|------------------|
| <ul> <li>Purchased by Babcock &amp; Wilcox in 1971</li> </ul>       | Babcock & Wilcox |
| <ul> <li>Sold to IMI plc, out of the UK in 1981</li> </ul>          | Bailey           |
| Largest dedicated severe service valve<br>manufacturer in the world | IMI              |
| Custom engineered – made to order<br>products                       | BIG              |
| Fossil Power, CHP, Oil & Gas, Nuclear                               | STI              |
| Global footprint – sales, service,<br>manufacturing, etc.           | FLUID KINETICS   |



# **Severe Service Definition**



- Cavitation potential exists (Water Valves)
- > High vibration / noise expected (Steam Valves)
- Flashing service
- ≻ ∆P/P1>0.5
- Historical knowledge
- Needs continuous maintenance
- Plant manager knows about the valve



Severe Service = High Pressure Drop = High Velocity = ENEMY

# **Velocity Related Damage Mechanisms**



<u>Cavitation</u> damage varies as a 5<sup>th</sup> to 6<sup>th</sup> power of velocity

Erosion damage varies as a 2<sup>nd</sup> to 4<sup>th</sup> power of velocity

Control valve noise varies as logarithmic with mach

Vibration is caused by excessive fluid velocities & turbulence

<u>Corrosion</u> is accelerated by velocity & fluid turbulence

## Common Severe Service Applications – Combined Cycle Power Plants



- Main Boiler Feedpump Recirculation
- Start-up & Main Feedwater Regulation
- Turbine Bypass Systems
- Attemperation & Spraywater Control
- > Auxiliary Steam
- Vent Valves
- Condensate Recirc valves



# **Key Application Parameters**



#### Plant type

- Combined Cycle, Supercritical, Sub-critical, CHP
- Cycling, Base Loaded, Peaking, Process Steam

Identify the function of the control value in the loop

- Flow control, Pressure control, Temperature control, Safety function
- System design and solution: Installation, Piping, Drains, Controls, etc.
- Review data sheet and establish operating parameters based on:
  - Specified operating conditions
  - Extrapolation between specified conditions
  - Historical knowledge of the valve application and industry

# **Key Process Parameters**



#### Pressure Drop

- High pressure drops can lead to high velocities multi-stage pressure letdown is required
- High velocities can lead to cavitation in water service and noise in steam service when left uncontrolled

#### Rangeability

- Many applications require high rangeability for process control, i.e. Drum Level Control and Spraywater control
- Valve trim design, capacity and stroke length have a dramatic impact on rangeability

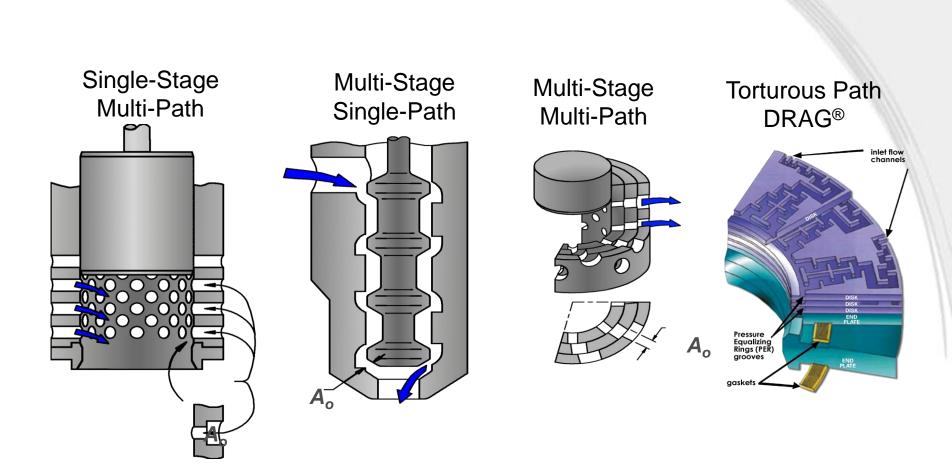
#### Temperature

- High temperature designs require higher strength materials; CrMo, Inconel, Surface treatments
- Adding spraywater introduces thermal stresses full system must be reviewed and designed together to provide proper control and protection from thermal fatigue

#### Noise Requirements

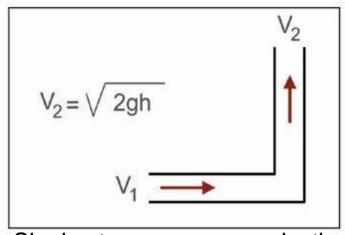
- High pressure letdown in steam valves can create high velocities leading to noise levels near >110 dBA
- Steam <u>kinetic energy</u> must be controlled using mult-stage pressure letdown to reduce noise and vibration and keep plant operating safely

# **ISA guide: Velocity Control Limits**

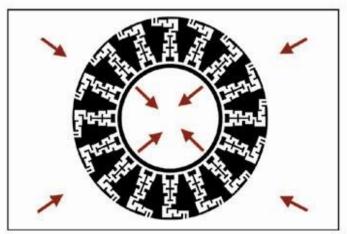



#### Trim outlet kinetic energy criteria

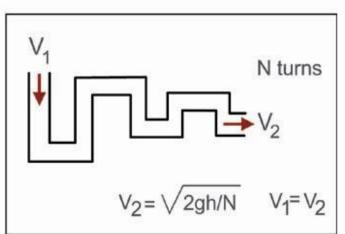
|                                        |                                        | 07                                    |  |
|----------------------------------------|----------------------------------------|---------------------------------------|--|
| $KE = \frac{\rho V^2}{2g_c}$           | Gas / steam kinetic<br>energy criteria | Equivalent liquid /<br>water velocity |  |
| 2g <sub>c</sub><br>Service conditions  | psia                                   | ft / s                                |  |
| Continuous service single phase fluids | 70                                     | 100                                   |  |
| Cavitating & multiphase fluid outlet   | 40                                     | 75                                    |  |
| Vibration sensitive system             | 11                                     | 40                                    |  |
| Intermittent duty                      | 150                                    | -                                     |  |


### **Severe Service Control Valve Trims**

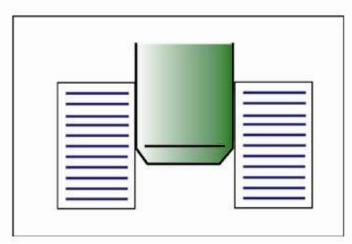





# DRAG<sup>®</sup> velocity control principle







Single stage pressure reduction



Multi path multi stage disk

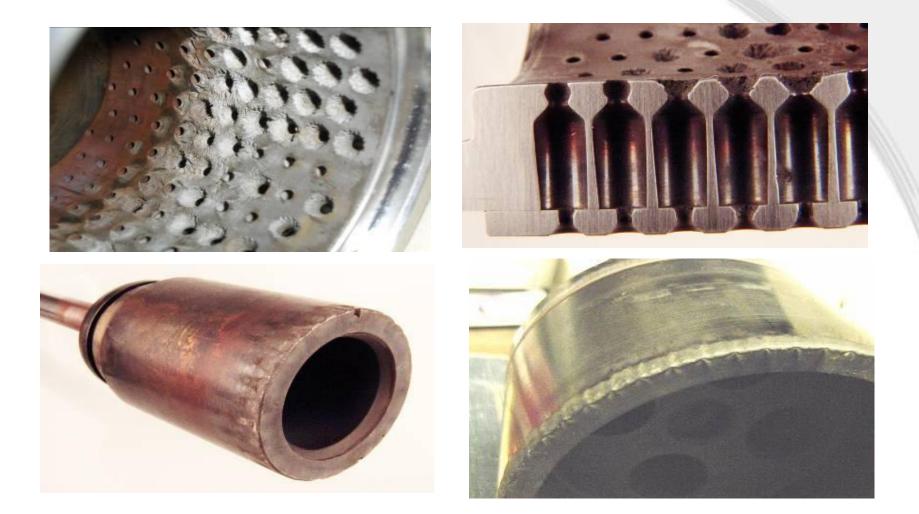


Multi stage pressure reduction



DRAG<sup>®</sup> disk stack

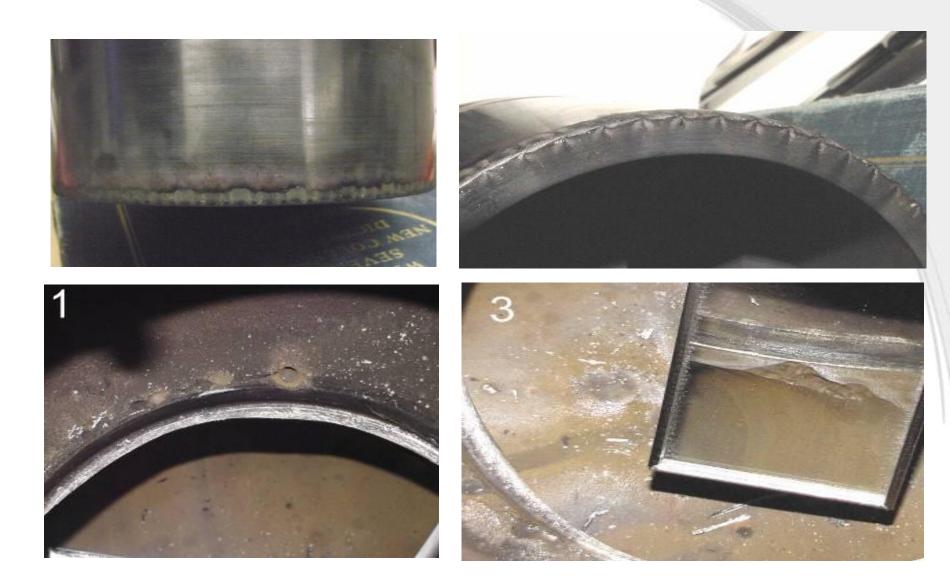
# What happens when not enough stages are used?




|                  | ΔP, psi    |            |            |            |  |
|------------------|------------|------------|------------|------------|--|
| Number of stages | 500        | 1400       | 2300       | 4100       |  |
|                  | ft/s       | ft/s       | ft/s       | ft/s       |  |
| 1                | <u>155</u> | <u>259</u> | <u>332</u> | <u>441</u> |  |
| 3                | <u>103</u> | <u>172</u> | <u>220</u> | <u>293</u> |  |
| 4                | < 100      | <u>148</u> | <u>190</u> | <u>253</u> |  |
| 8                | < 100      | < 100      | <u>121</u> | <u>161</u> |  |
| 12               | < 100      | < 100      | < 100      | <u>113</u> |  |
| 16               | < 100      | < 100      | < 100      | < 100      |  |

#### Assumes ambient temperature water

## Cavitation Damage – Not Enough Stages






# Application – BFP Recirculation, 1700 psid

# **Erosion in HP Feedwater valve**





# Summary

- Though small in number, severe service applications pose the highest challenges in the steam and water systems
- Each application should be reviewed and treated appropriately based on key application and process parameters
- Once severe service applications are identified the correct valve design needs to be applied to assure proper valve and plant performance
- ISA guidelines for sizing control valves are a great starting point: "Control Valves – Practical Guides for Measurement and Control" published by ISA







Babcock & Wilcox



BTG