IFRF ToTeM 41:

Recycled Flue Gas Properties – An Utility View

Dr Karsten Riedl / David Couling

E.ON Technologies

IFRF ToTeM 41, 11.06.2014, Warsaw

Outline

- Indicators of Successful Plant Operation
- Indicators for Oxyfuel Technology
- Flue Gas Recycle Options
- Limits of Recycled Flue Gas Properties
- Conclusions

Indicators of Successful Plant Operation

Overall goal: Return of investment for the company

Power generation goal: Safe, reliable and efficient generation at minimum

cost

- Safety: Safety First, Healthy conditions for employees, Environmental impact
- Availability and Operability: Low commercial risks, high availability, Flexible operation
- Efficiency: High plant efficiency, Responsible resource usage
- **Cost:** Economic beneficial, Business case

Indicators for Oxyfuel Technology

• Safety/Environment:

- Likely lower environmental impact
- Higher CO2, NOX, SOX... concentrations \rightarrow Risks for employees
- Other safety challenges e.g. new equipment, O2/CO2 storage...
- Availability and Operability:
 - New Technology \rightarrow Higher commercial risks than conventional generation
 - Concerns regarding availability → Vendor guarantees?
 - Less plant flexibility, Air firing capability $(?) \rightarrow$ Higher commercial risks

Indicators for on Oxyfuel Technology II

• Efficiency:

• Efficiency drop due to Carbon Capture \rightarrow More usage of fossil resources

Cost

- Higher cost than conventional power plants
- Uncertainties in regulation (CO2 storage)
- Low prices at carbon emission trading scheme
- \rightarrow Oxyfuel as a business case uncertain

\rightarrow Oxyfuel is more risky than conventional generation

Outline

- Indicators of Successful Plant Operation
- Indicators for Oxyfuel Technology
- Flue Gas Recycle Options
- Limits of Recycled Flue Gas Properties
- Conclusions

Recycle Options – Two Cases

IFRF / ToTeM41 11.06.2014 ETG-CNG/Ri

[ADE12]

Hot Flue Gas Recycle

- Mill outlet temperature 100...160 °C
- No high load air operation due to FGD and SCR capacity limits
- Recycled Flue Gas Properties
 - High SOX concentration
 - \rightarrow SOX level (boiler vendor maximums) 3000 ppm (?)
 - → Above H2SO4 dew point
 - Higher water concentration
- Smaller FGD unit
- → Higher efficiency (compared to cold flue gas recycle), but more risks:
 - Some concerns remain regarding boiler materials
 - Capacity limits in air firing

[ADE12]

Cold Flue Gas Recycle

- Mill outlet temperature < 100 °C
- Probably retains higher load air operation capability
- Recycled Flue Gas Properties
 - SOX concentration
 - \rightarrow SOX level ~ 40...80 ppm
 - No dew point concerns due to reheat after FGD
 - Larger FGD unit needed

→ Lower efficiency (compared to hot flue gas recycle), but less risks:

- No boiler materials issues expected
- Lower pollutant concentration in flue gas recycle

[ADE12]

Conclusions

- Oxyfuel is more risky than conventional generation
- Flue gas recycling makes plant operation more complicated than in conventional plants
- Recycled flue gas properties determined by optimizing plant efficiency against operational risks
- Boundary conditions define flue gas recycle option
 - Hot flue gas recycle appears more beneficial for Oxyfuel only plant where gas conditions allow this configuration
 - Cold recycle allows a higher load in air mode and less acidic gases, but reduce efficiency

Thank you for your attention. Vielen Dank für Ihre Aufmerksamkeit. Спасибо за внимание.

Contact details

Dr Karsten Riedl David Couling E.ON Technologies T +49-209-601-3114 karsten.riedl@eon.com