Recycled Flue Gas Properties – An Utility View

Dr Karsten Riedl / David Couling
E.ON Technologies
IFRF ToTeM 41, 11.06.2014, Warsaw
Outline

• Indicators of Successful Plant Operation
• Indicators for Oxyfuel Technology
• Flue Gas Recycle Options
• Limits of Recycled Flue Gas Properties
• Conclusions
Indicators of Successful Plant Operation

Overall goal: Return of investment for the company

Power generation goal: Safe, reliable and efficient generation at minimum cost

Safety: Safety First, Healthy conditions for employees, Environmental impact

Availability and Operability: Low commercial risks, high availability, Flexible operation

Efficiency: High plant efficiency, Responsible resource usage

Cost: Economic beneficial, Business case
Indicators for Oxyfuel Technology

• **Safety/Environment:**
 - Likely lower environmental impact
 - Higher CO2, NOX, SOX… concentrations → Risks for employees
 - Other safety challenges e.g. new equipment, O2/CO2 storage…

• **Availability and Operability:**
 - New Technology → Higher commercial risks than conventional generation
 - Concerns regarding availability → Vendor guarantees?
 - Less plant flexibility, Air firing capability (?) → Higher commercial risks
Indicators for on Oxyfuel Technology II

- **Efficiency:**
 - *Efficiency drop* due to Carbon Capture → More usage of fossil resources

- **Cost**
 - Higher *cost* than conventional power plants
 - Uncertainties in regulation (CO2 storage)
 - Low prices at carbon emission trading scheme

→ Oxyfuel as a business case uncertain

→ Oxyfuel is more risky than conventional generation
Outline

• Indicators of Successful Plant Operation
• Indicators for Oxyfuel Technology
• Flue Gas Recycle Options
• Limits of Recycled Flue Gas Properties
• Conclusions
Recycle Options – Two Cases

Hot flue gas recycle

Cold flue gas recycle
Hot Flue Gas Recycle

- Mill outlet temperature 100…160 °C
- No high load air operation due to FGD and SCR capacity limits
- Recycled Flue Gas Properties
 - High SOX concentration
 → SOX level (boiler vendor maximums) 3000 ppm (?)
 → Above H2SO4 dew point
 - Higher water concentration
 - Smaller FGD unit
 → **Higher efficiency** (compared to cold flue gas recycle), but **more risks:**
 - Some concerns remain regarding boiler materials
 - Capacity limits in air firing
Cold Flue Gas Recycle

- Mill outlet temperature $< 100 \, ^\circ\text{C}$
- Probably retains higher load air operation capability
- Recycled Flue Gas Properties
 - SOX concentration
 - SOX level $\sim 40…80 \, \text{ppm}$
 - No dew point concerns due to reheat after FGD
 - Larger FGD unit needed

\Rightarrow **Lower efficiency** (compared to hot flue gas recycle), but **less risks:**
 - No boiler materials issues expected
 - Lower pollutant concentration in flue gas recycle
Conclusions

- Oxyfuel is more risky than conventional generation
- Flue gas recycling makes plant operation more complicated than in conventional plants
- Recycled flue gas properties determined by optimizing plant efficiency against operational risks
- Boundary conditions define flue gas recycle option
 - **Hot flue gas recycle** appears more beneficial for Oxyfuel only plant where gas conditions allow this configuration
 - **Cold recycle** allows a higher load in air mode and less acidic gases, but reduce efficiency
Thank you for your attention.
Vielen Dank für Ihre Aufmerksamkeit.
Спасибо за внимание.

Contact details
Dr Karsten Riedl
David Couling
E.ON Technologies
T +49-209-601-3114
karsten.riedl@eon.com