

HOT TOPIC HOUR MCILVAINE PRESENTATION

INFILCO DEGREMONT HIGH-EFFICIENCY FGD WASTEWATER TREATMENT

JUNE 16, 2011

Hot Topic Objectives

***Who is Infilco Degremont (IDI)**

***Source of FGD Waste Water**

*Factors affecting the flow & the characteristics of FGD Waste Stream

***FGD WW typical Characteristics**

***The Challenges**

Treatment Design

- Physical / Chemical
- **IX**
- Biological

***Future of FGD WWTP**

Who is Infilco Degremont Inc.

Infilco Degermont is one of the leading water and wastewater treatment plant in the world and part of the \$45 billion Suez Group.

- Over 100 years of US experience
- ***** Over 500 US industrial lants
- *** 45 FGD WWT Plants**
- * 2,500 municipal wastewater plants
- *** 3,000 drinking water plants**
- * "Infilcare" services capability

117 Years of Service to US Industry and Municipalities

Source of FGD Waste Stream FGD Block Diagram

Factors Affecting the FGD Waste Stream

*****Rate Capacity of the Absorber and the number of units

- Design Chloride Characteristics of the Absorber Cycle Loop
- *****Operational practices of the scrubber
- *Efficiency and type of the first & the secondary hydroclones
- **Type of FGD Process (Limestone, lime, caustic soda....)**
- *Chemical Composition of Coal, Limestone, and Make-up Water

FGD Waste Water Characteristics

Design Impact Considerations

Parameters	Units	Typical Influent Dissolved Parameters (Range)	Typical Effluent Parameters
Total Suspended Solids (TSS)	mg/L	500 - 20,000	<10
Total Dissolved Solids (TDS)	mg/L	15,000 - 45,000	N/A
рН	Standard Units	4 - 6	6-9
COD	mg/L	200 - 500	N/A
Chloride (Cl)	mg/L	10,000 - 30,000	N/A
Ammonia (N-NH ₄)	mg/L	20 - 60	3.0
Nitrate (N-NO ₃)	mg/L	30 - 200	N/A
Sulfate (SO ₄)	mg/L	3,000 - 5,000	N/A
Fluoride (F)	mg/L	10 - 50	10.0
Aluminum (Al)	mg/L	10 - 20	0.1
Arsenic (As)	mg/L	0.08 - 1	0.1
Boron (B)	mg/L	20 - 300	10
Cadmium (Cd)	mg/L	0.05 - 0.1	0.1
Calcium (Ca)	mg/L	300 - 10,000	N/A

* Filters are required -Factor affecting equipment sizing

Biological/IX treatment required

FGD Waste Water Characteristics

Design Impact Considerations

Parameters	Units	Typical Influent Dissolved Parameters (Range)	Typical Effluent Parameters
Chromium (Cr)	mg/L	1-3	0.1
Cobalt (Co)	mg/L	0.1-0.3	0.1
Copper (Cu)	Standard Units	4 - 6	6-9
Iron (Fe)	mg/L	2-5	0.5
Lead (Pb)	mg/L	2	0.5
Magnesium (Mg)	mg/L	200 - 4000	NA
Manganese (Mn)	mg/L	30 - 200	50
Mercury (Hg)	mg/L	1-3	0.001*
Nickel (Ni)	mg/L	1-2	0.2
Selenium (Se)	mg/L	0.08 - 0.8	0.1
Vanadium (V)	mg/L	1 - 3	3.0
Zinc (Zn)	mg/L	5-10	0.1
Sio ₂	mg/L	50 - 300	N/A

- * Filters are required
- -Factor affecting equipment sizing
- -Biological/IX/Evaporation treatment required

FGD Waste Water Characteristics

Design Impact Considerations for Dewatering

Parameter	Design Range
Flow (GPM)	75 – 400
Temperature °F	110 - 130
рН	5.5 - 6.5
TSS (mg/L)	<20,000
Chlorides (mg/L)	<30,000

TSS Make-up	Design Range	
CaSO ₄	40 - 60	
CaCO ₃	5 - 15	
Flyash	5 - 15	
Inerts	20 - 30	
$Mg(OH)_2$, $MgCO_3$	0 - 10	

The Challenges

*FGD wastewater treatment plants must be initially designed using assumed theoretical wastewater analyses.

*Coal and limestone sources will change over time, and sometimes on the same day.

*The design must incorporate high flexibility to accommodate the actual differing supply and operating conditions of the absorbers.

Typical FGD WWTP Block Diagram

FGD Process Units

- *** Equalization**
- * Desaturation
- * pH adjustment
- Coagulation
- Heavy Metal reaction tank
- ***** Flocculation
- Clarification/Thickening
- * Polishing
 - IX (Ion Exchange)
 - Biological
- * Dewatering

Physical/Chemical Treament Clarification/Thickening in One Tank The "Heart" of IDI's Design

Design Principles of the DensaDeg

- Rapid mix of coagulant and metal scavenger
- Polymer addition via a draft ring which increases efficiency of the flocculation
- Internal solids recirculation within reactor
- External sludge recycle back to reactor/or Desaturation tank
- Dense solids/clarified water separation up flow through tube settlers

Typical WWTP 3D with Sand Filtration

Polishing with IX Boron Removal from FGD Waste Stream

Boron can be removed from FGD Wastewater via two main processes

1. Chemical Precipitation

2. Ion Exchange Concentration with final removal via:

a. Crystallizer

b. Chemical Precipitation

iX[™] Boron Removal Standard Steps in IX Operation Loading – Single Unit

Selective IX Resin removes Boron to <5 ppm in FGD Wastewater

Boron Removal

iX[™] System is based on a Selective IX Resin that is effective in the removal of borate from FGD Wastewater.

The process relies on the selective removal of Brate from the FGD wastewater, which results in a concentrated waste stream that can be more easily treated.

The IX process has the following advantages:

- **1.** Concentrated waste stream
- 2. Small waste volume
- **3.** Lower operating cost
- **4.** Able to handle swings in Borate concentration in the wastewater very easily.

5. Operation cost directly correlates to Borate concentration

iX[™] Boron Removal Process Standard Steps in IX Operation Lead -Lag Concept

Boron Elution

Sulfuric Acid (H2SO4) is used to elute the Borate off IX Resin

The concentrated Boron recovery step takes normally 1.33 Bed Volumes of 5% H2SO4 solution.

*****Boron elution precedes and overlaps with H+ elution

The concentrate acid regenerate stream normally contains between 4,000 to 8,000 ppm of Boron

Biological Treatment Selenium Removal Treatment iBio

The removal of oxy-anions of Selenium (Selenate and Selenite) are based on the biological reduction of selenium, via Sulfate Reducing Bacteria (SRB)and Denitrification Bacteria, to non-toxic elemental Selenium.

Reactor Configuration

iBIO®

*****Suspended growth activated sludge system

Continuous Stirred Tank Reactor

Allows for minimum impact of wastewater transients (e.g., influent TSS).

Decouples the two stages of bacterial activity and allows for independent optimization of the "denitrification" and "selenium reduction" steps.

iBIO[®] Microbial Activity

Denitrification

Conversion of nitrates (NO₃) to nitrogen gas (N₂)

Nitrates (NO₃) + Organics + Heterotrophic Bacteria = Nitrogen Gas + Oxygen + Alkalinity

Selenium Reduction Process

Selenates/Selenites + Organics + Sulfur Reducing Bacteria = Reduced Elemental Selenium

iBIO[®] Process Schematic

Conemaugh Generating Station

Future of FGD Treatment Plants

Coal fired plants provide – 50% of USA electricity and they remain a mainstay for electricity throughout the world

*150 FGD projects had been scheduled in the USA within 2008 – 2010

*****Some are retrofits others are new

*Approximately 80% of new scrubbers will use wet – limestone technology

Reliability and abundance of limestone

THANK YOU!

Questions and Comments are Welcome

