

Achieving Near Zero Emissions via Oxy-Combustion

Minish Shah

McIlvaine Webinar - Update on Oxyfuel Combustion August 12, 2010

Making our planet more productive

www.praxair.com

Copyright © 2010 Praxair Technology, Inc. All rights reserved.

Oxy-Fuel Technology Programs at Praxair

- Near Zero Emissions Oxy-Combustion Flue Gas Purification
 - \$5.4 MM DOE funded program (2009 2011)
 - Two methods for SOx/NOx removal
 - Technology for achieving up to 99% CO₂ recovery
- Pilot-scale oxy-combustion testing at U. of Utah
 - Oxy-fuel PC (1.2 MW_{th})
 - Oxy-fuel CFB (0.3 MW_{th})
- Oxy-fuel retrofit of NG-based 50 MMBtu/hr steam generator for oil sands planned in 2011-2012
- Oxygen transport membrane (OTM) based power cycle
 - Efficiency penalty for CO_2 capture is only ~ 3 percentage points
 - Bench-scale testing on the OTM reactors completed
 - Pilot-scale OTM units are being designed

Power Plant without CCS

Flue gas flow from 500 MW (net) subcritical plant is ~ 5 MM lb/hr

Oxy-Coal Power Plant with CCS

- With oxy-combustion, flue gas flow is reduced to ~1.3 MM lb/hr
- Flue gas is sent to CO₂ processing unit (CPU)
- After separating CO₂, vent gas is only 0.11 MM lb/hr

Near Zero Emissions CO₂ Processing Unit

Sulfuric Acid Process for SOx/NOx Removal

Converts SOx and NOx into saleable H₂SO₄ and HNO₃

- Flue gas contacted with circulating H₂SO₄ at elevated pressure
- >99% SOx removal and > 90% NOx removal
- Process also removes Hg and moisture

Benefits:

- Retrofitting existing plants reduce FGD opex and eliminate SCR opex
- New CCS plants Smaller FGD; eliminate SCR

Current Status:

Bench-scale tests underway; plan to complete in Dec 2010

Next Steps/Challenges:

- Handling and storage of acid by-products
- Significant efforts required to scale-up from current stage

Activated Carbon Process for SOx/NOx Removal

Converts SOx and NOx into dilute H₂SO₄ and HNO₃

- Flue gas contacted with activated carbon at elevated pressure
- Dual bed system one on feed while other is being regenerated
- Mercury removal in a separate carbon bed system

Benefits:

- Retrofitting existing plants Smaller FGD; eliminate SCR opex
- New plants Smaller FGD; eliminate SCR

Current Status:

- Bench-scale tests showed >99% SOx removal and >98% NOx removal
- Continuous operation testing planned in 2011

Next Steps/Challenges:

- Scale up to handle 10 50 tpd CO_2 -rich flue gas
- Demonstrate performance in long-term operation tests

Vacuum Pressure Swing Adsorption (VPSA) for Achieving High CO₂ Recovery

- Increases overall CO₂ recovery from 90% to 99%
 - Upgrades CO₂-lean stream from cold box to CO₂-rich stream

Benefits:

- Achieves high CO₂ recovery even from plants with high air ingress
- Reduces overall CO₂ capture cost

Current Status:

- Pilot-scale testing underway with a typical cold box vent stream
- 100 tpd unit being commercialized for other CO₂ capture application

Next Steps/Challenges:

Technology will be available for 200 – 500 MW scale plants by 2012

Projected Process Performance Activated Carbon Process + VPSA

- % reductions in air emissions
 - Compared to air-fired plant with FGD and SCR

CO ₂	> 98.5%
SOx	> 99.5%
NOx	> 96%
Hg	> 99%
CO	> 99.5%
NH ₃	100%
HCI	100%
PM	> 99%
VOC	> 99%

• CO₂ Purity (by vol.)

CO ₂	> 99.99%
Atm gases	< 100 ppm
H ₂ O	1 ppm
SOx	7 ppm
NOx	5 ppm
Hg	Nil
СО	< 1 ppm
NH ₃	Nil
HCI	Nil
PM	Nil
VOC	Nil

% Reductions =

1 - (emissions/net output)
oxy-firedx 100(emissions/net output)
air-fired