

Coal Slurry Mixing for IGCC Powerplants

GLOBAL INFRASTRUCTURE X PROCESS EQUIPMENT X DIAGNOSTIC TOOLS

August 19, 2010

Introduction

Utility Scale IGCC

- Dry Feed Process
 - Siemens
 - Mitsubishi
 - KBR Southern Company
- Slurry Feed Process
 - GE Energy
 - ConocoPhillips

Multiple Competing Process Routes

Size

- Utility Scale requires large volumes (1 MM gallons!)
- Large Volumes require large agitators and complex design
- Slurry Characteristics
 - 60-65% solids slurry (lowest water content)
 - Difficult mixing application
 - Feedstock dependent
- Reliability
 - Baseload generation requires high availability and reliability
 - Periodic maintenance with no/low downtime

Specific Design Issues Exist

Size

- Reliable, predictable and proven scale up methods required
- Slurry Characteristics
 - Variable Conditions
 - Percent Solids
 - Particle Size and Distribution
 - Feedstock Composition
- Reliability
 - Equipment design for 24/7 Operation
 - Lengthy maintenance intervals

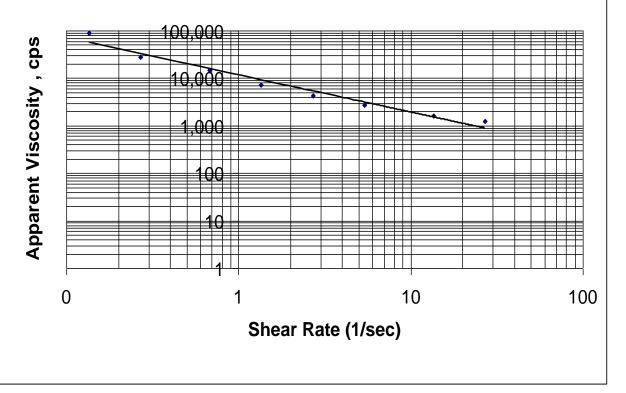
It's more than a Mixer... It's a Solution!

- Accurate measurement of Slurry Viscosity is critical
- Characterization of slurry pseudoplasticity also vital
- Testing with real product gives performance clues
- Multiple geometries can be studied
- Process and Mechanical options can be developed, presented and reviewed for trade-offs.
 - Power, Capital and Maintenance costs swing on slurry variables

Understanding the Process Enables the Solution

Viscosity Testing of Slurries

Text Header


- Slurry Variables
 - Percent Solids
 - Particle Size
 - Size Distribution
 - Specific Gravity
- Agitator Sizing

LIGHT

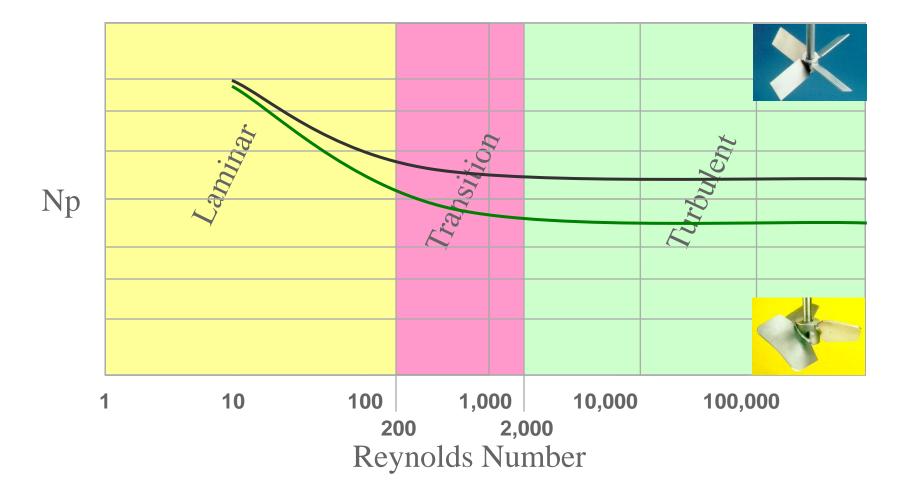
- Impeller Viscosity
- Average Shear Rate
- Shear rate at 100/sec is not helpful to mixer sizing

Viscosity versus Shear Rate

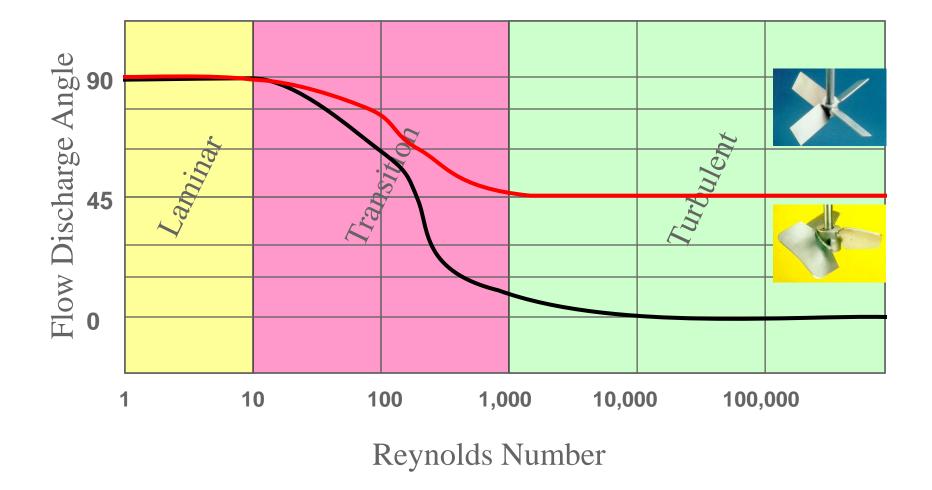
All Slurries are created Differently

- "Shear Thinning" (viscosity drops as shear is applied)
 - Impeller operates at lower "apparent" viscosity (better pumping)
 - Impeller forms a "cavern" of lower viscosity fluid
 - Average shear rate determines wall viscosity
 - Geometry, average shear rate affect movement at tank wall

Small changes in viscosity could mean large changes in mixer


$N_{re} = 10.754 * SG * N*(D^{2}) / \mu$

- Nre = Reynolds Number
- SG = Specific Gravity
- N = Impeller Speed
- D = Impeller Diameter in Inches
- μ = Viscosity in cps



Effect of Reynolds Number

- Test multiple geometries maintain geometric similarity
- Test multiple volumes to determine scale up exponents
- Test multiple impellers and configurations
- Consult with client (witness, webex, video) on desired process results and trade offs
- Use proven scale up methods to guarantee process results

Conclusions

Sizing and selecting agitators for Utility Scale IGCC utilizing the slurry process is a complex and critical step in the plant design. This decision will impact the ultimate plant performance.

- Full Scale Experience?
- Lab Testing Capability?
- Guaranteed Scale Up Performance?
- Robust Equipment Design?

Make Informed Decisions on Vendor Selection

Any Questions?

