

Melissa Sewell Lhoist North America FGT Solutions

PC MACT – Low Cost HCI Control Option

March 30, 2011

Choist North America

Topics of Discussion

- Lhoist and Lhoist North America
 - Our Company
 - Our Focus
- Summary of PC MACT Regulations

- Focus on HCI
 - Control Options
 - Experience
 - US Testing
- Questions

Who We Are

- Lhoist and Lhoist North America
 - Lhoist Group is a family business headquartered in Brussels, Belgium
 - Lhoist has been in business for more than 115 years and is the Largest producer of Calcium Products in the world
 - More than 80 plants in 17 countries
 - Lhoist North America (LNA)
 - ✓ Began as Chemical Lime Company in 1966
 - Franklin Industrial Minerals
 - Plants and terminals throughout the US (mainly sunbelt)
 - Suppliers of high quality chemical grade products including Limestone, Quicklime, Slurry, and Hydrate (Sorbacal[®])

Focus on Emission Control

- Lhoist and LNA have been focused on the emission control areas for many years
 - In Europe, Lhoist has developed Emission Control Solutions into the municipal solid waste, waste to energy, chemical, glass, and Cement industries
 - In the US, LNA has a FGT Solutions Team focused on emission control applications, and have much experience in the utility industry with controlling SO₂, as well as SO₃, and other acid gases
 - Ability to perform Dry Sorbent Injection (DSI) demonstrations utilizing our injection equipment, FTIR for emissions monitoring, and high quality Sorbacal[®] products

Summary of the PC MACT

Final MACT Emission Limits:

MACT Emission Limits for Portland Cement Plants				
Source type	Pollutant	Emission limit		
Existing kilns at major or area sources	Particulate matter	0.04 lb/ton of clinker		
	Dioxins/furans	0.2 ng/dscm (TEQ) ^{1,2}		
	Mercury	55 lb/MM tons of clinker		
	Total hydrocarbons	24 ppmvd ^{2,3} measured as propane		
New kilns at major or area sources	Particulate matter	0.01 lb/ton of clinker		
	Dioxins/furans	0.2 ng/dscm (TEQ) ^{1,2}		
	Mercury	21 lb/MM tons of clinker		
	lotal hydrocarbons	24 ppmvd ²³ measured as propane		
Existing kilns at major sources	HCI	3 ppmvd ²		
New kilns at major sources	HCl ⁴	3 ppmvd ²		
Existing clinker coolers at major or area sources	Particulate matter	0.04 lb/ton of clinker		
New clinker coolers at major or area sources	Particulate matter	0.01 lb/ton of clinker		
Existing or new raw material dryers at major or areas sources	Total hydrocarbons	24 ppmvd ^{3,5} measured as propane		
Existing or new raw material dryers at major sources	Opacity	10%		
Existing or new raw material mills at major or area sources	Opacity	10%		

CEMS = continuous emissions monitoring system; HCl = hydrochloric acid; MACT = maximum achievable control technology; ppmvd = parts per million by volume, dry basis; TEQ = toxicity equivalent.

¹If the average temperature at the inlet to the first particulate matter control device (fabric filter or electrostatic precipitator) during the dioxins/furans performance test is \$400°F, this limit is changed to 0.4 ng/dscm (TEQ).

²Corrected to 7% oxygen.

³Any source subject to the 24-ppmvd total hydrocarbon limit may elect to meet an alternative limit of 9 ppmvd for total organic HAPs. If the source demonstrates compliance with the total organic HAPs limit under the requirements of \$63.1349, then the source's total hydrocarbon limit will be adjusted to equal the average total hydrocarbon emissions measured during the organic HAP compliance test.

4If the kiln does not have an HCI CEMS, the emission limit is zero.

*Corrected to 19% oxygen.

Source: Aspen Publishers, Inc.; adapted from 75 FR 55052.

Copyright

Current Control Technologies Present in the US

- Mercury
 - One kiln currently controls mercury using activated carbon injection and estimates they can achieve 85 percent control.
- THC
 - One kiln controls THC with a regenerative thermal oxidizer and achieves 98 percent removal of THC and CO combined.

ΡM

 All kilns have either ESPs or fabric filters to meet the 1999 NESHAP PM limit of 0.5 lb/ton clinker (0.3 lb/ton feed).

SO₂

- Five kilns have limestone wet scrubbers for SO₂control.
- A few kilns have some type of lime injection system. These controls also reduce HCI emissions and (at least in the case of wet scrubbers) mercury emissions.

 NO_{x}

• Five to fifteen kilns have selective non-catalytic reduction systems.

Copyright

Projected Control Technologies to Meet PC MACT

Control Type	Pollutants Controlled	Maximum estimated control efficiency (percent)	Number of projected installations ^o
Lime injection	HCI	70	2
Limestone wet scrubber	Mercury HCI	Mercury – 80 HCl – 99.9	59-117
Activated Carbon Injection ^a	Mercury THC/Organic HAP	Mercury – 90 Organic HAP - 80	71-153
Regenerative Thermal Oxidizer⁵	тнс	98	10-21
Membrane Bags added to existing Fabric Filter	РМ	>99.9	6-28
Fabric Filter	PM	>99.9	0-2
Selective NonCatalytic Reduction	NOx	50-60	7
a Includes a second fabric filte	r for carbon capture		
May require a wet scrubber i	upstream for acid gas ren	noval.	

- ° Based on an estimated population of about 153 kilns. Many kilns may require multiple controls.
 - Lime injection "maximum estimated control efficiency" based on standard hydrate
 - Lime injection (often called Dry Sorbent Injection, or DSI) using enhanced hydrates could provide >90% control for HCI Emissions

Sorbacal® Product Development

- From a standard hydrate to a high performance hydrated lime
 - Type N: Standard hydrated lime
 - Sorbacal[®] H: First generation emission control hydrated lime
 - Sorbacal[®] SP/SPS: Next generation high pore volume and high specific surface area hydrated lime

The decisive parameters to enhance the gas/solid contact are **Pore Volume** and **Specific Surface Area** of the reagent

Range of Products

Standard Hydrate

- Physical characteristics
 - Surface 14 18 m²/g (BET)
- Reaction depending on temperature and humidity
- Disadvantage: Difficult to achieve high performance

Sorbacal[®] H

- Physical characteristics
 - Finer particles and high surface area
 - Surface > 20 m²/g (BET)

Sorbacal[®] SP and SPS

Sorbacal[®] SP

- Physical characteristics
 - High porosity
 - Surface > 40 m²/g (BET)
- High removal capacity through controlled influence of porosity (accessibility by acidic components)

Sorbacal[®] SPS

 Sorbacal[®] SP is activated before use to allow the gases to reach the porosities more easily

Important to Note: These products differ in Physical Structure (crystal form), but not in Chemistry (i.e. Ca(OH)₂-Content)

Demonstration and Commercial Use Experience

- Injection trials in Europe have led to commercial use of DSI technology with Sorbacal[®] products within the cement industry
 - For SO₂, HCI, HF

Commercial installations in Europe & Asia have shown ability to achieve >90% SO_2 and > 99 % HCI removal with Sorbacal[®] SPS

Demonstration and Commercial Use Experience

Case Studies/References available

Locations		
Beckum	Germany	
Antoing	Belgium	
Obourg	Belgium	
Eclepens	Switzerland	
Rochefort-sur-Nenon	France	
Mardyck	France	
Норе	United Kingdom	
Saint-Laurent-du-Pont	France	

 These results have led LNA to begin laboratory and field demonstrations in the US

Factors That Impact DSI Effectiveness

- Flue gas properties
 - Temperature
 - Moisture
 - Competing acid gases
 - CO₂ concentration

Reagent properties

- Particle surface area
- Pore shape, size and volume
- Particle size distribution

System properties

- Distribution of reagent injection
- In-flight residence time
- Particulate control device

HCI Removal Sorbacal[®] SPS vs. Standard Hydrated Lime

HCI: 1200 mg/Nm³ - H: 10 % - SR: 1,7 - CO₂: 9 %

March 30, 2011

Copyright

HCI Removal Sorbacal[®] SPS vs. Standard Hydrated Lime

Next Steps in US

- EPA Testing April 2011
 - Standard Hydrate and Sorbacal[®] SPS
 - Range of Injection Temperatures
 - Additional work on ESP vs. Baghouse performance
 - Develop understanding of competing acid gases

- Field Demonstrations
 - Cement
 - Paper
 - Utility

Questions?

Contact:

Melissa Sewell Lhoist North America 3700 Hulen Street Fort Worth, Texas 76107 <u>melissa.sewell@lhoist.com</u> 817-806-1549 <u>www.lhoist.us</u>