NAES Corporation CCR and ELG Rule Impacts on the Power Industry

Proposed EPA Regulations Changing the Coal Power Generation Industry

How Dense Slurry Ash and Wastewater Management can Solve **Challenges Resulting from Proposed Regulations**

Disadvantages of Wet (lean) Slurry and "Dry" Ash Management

Traditional Lean Slurry Cons	Traditional Dry Management Cons
High Water Use	Relatively High Capital/Operating Cost
Waste Water Management	High Risk of Fugitive Dust
Risk of Flow if Released	Multiple Handling for Transport
Dike Inspection & Maintenance	Increased Safety Risk from Trucks
Risk of Ground Water Contamination	Impoundment Heavy Equipment Required
Will Become Airborne if Dry	Relatively High Hydraulic Conductivity
Process Water Leachate	High Storm Water Leachate Volumes
Variable Hydraulic Conductivity	Ground Water Risks
Complex Closure Requirements	High Labor Costs (dust supp. fuel mgt., security, lighting, etc.)

What is Circumix Dense Slurry Technology?

- > Intense Mixing that Maximizes Availability of Reactive lons
- Mixes Wastewater with Fly Ash, & Other Combustion Residuals
- > Additives Not Required
- Water to Solids Ratio ~1:1
- Slurry Pumpable 10 km +
- Slurry Sets in 24 72 Hours
- Product Exhibits:
 - Low Hydraulic Conductivity
 - High Compressional Strength
 - Zero Discharge of Transport Water
 - Enhanced Metals Sequestration

Dense Slurry System Installations

Rovinari In Operation Since 2009 Scale: 4 X 270 m³ / Hour (E. Europe)

Jacksonville Unit, 2003 2 X 62.5 Ton/Hour Units

Past, Current and Future Dense Slurry Technology Use

Plant	Country	Year	MW	BA -PH	FA -PH	Slurry m ³
Pannon Hőerőmű	Hungary	1991-2000	200	38.8	155.2	6,480,000
Tatabányai Erőmű	Hungary	1993-2000	30	-	20	840,000
AES Borsodi	Hungary	1996-2000	200	24	156	2,400,000
Matra	Hungary	1998-	836	* 08	640	23,040,000
SC Collterm SA	Romania	2000-	50	3	20	1,050,000
Jacksonville JEA	USA	2003-	600	63 *	63	6,720,000
SC Collterm SA	Romania	2002-	50	3	17	840,000
Rovinari	Romania	2010-	1 720	120 *	508	1,140,000
Craiova II.	Romania	2010-	300	18.4 *	204	760,000
Isalnita	Romania	2010-	630	28 *	220.8	466,600
Spectrum	India	Const.	50	15.6	36.4	-
Turceni	Romania	Commis.	1320	120 *	440	-

* Highlighted Figures Indicate Ash Stabilized with FGD Water

Who Developed and Who Offers the Technology?

Largest Third-Party O&M Company	GEA EGI Developed Dense Slurry
O&M Track Record of 230 Facilities	Provides Heller [®] Type Dry Cooling &
and 67 GW	BoP Systems for the Power Industry
2,700 Employees, \$400+ Million in	GEA Group: \$7.4 Billion Revenues
Revenues	GEA EGI \$130 Million Revenues
Currently Operating 35 GW of Power	GEA EGI is a Member of HX segment
Facilities (114 plants)	Within the GEA Group

NAES and GEA have Teamed to Deploy Circumix Dense Slurry Technology and for NAES to be the Exclusive Provider of this Technology in North America

Dense Slurry Advantages Pursuant to CCR Proposed Rule

Features & Advantages

Solid, Non-Dusting Product

Significantly Reduced Fugitive Emissions

Cured Strength Typically 600-2000 psi

Eliminates Risk of Liquefaction & Spills Simplifies Impoundment Design Reduced Inspection Requirements Increased Ash Storage in Existing Space

Low Hydraulic Conductivity (10⁻⁴ – 10⁻¹⁰)

Enhanced Metals Sequestration Reduced Leachate Generation Reduced Risk of Groundwater Contamination Lower Post-Closure Risks

Advantages Pursuant to ELG Proposed Rule

- Effective Combined Stabilization of Ash & Wastewater
- > 80%-90% Reduction of Water Use for Ash Management
- Zero Discharge of Transport Water
- Leachate can be Reprocessed = Zero Discharge Impoundment
- Reduction of Plant-Wide Wastewater Generation

- Low Hydraulic Conductivity = Low Leachate Volumes & Greater Protection of Ground Water
- BAT: Proven Technology, Low Complexity, Low Life-Cycle Cost, Ability to Utilize Existing Infrastructure ,Energy Efficient, Can Achieve Effluent Standards

Crystal Growth During Curing Reduces Hydraulic Conductivity

Interstitial Crystal Growth Reduces Pore Size, Inhibits Fluid Flow, Increases Capillary Forces, Increases Tortuosity and Minimizes Hydraulic Conductivity

Dense Slurry System Final Ash Disposal

New Dike Borrow Material

No Incidents of Slope Failure, Seepage or Liquefaction

Dense Slurry System Ash & Wastewater Testing

- Testing Programs can be Performed at the Plant
- Testing can be Conducted Remotely
- Several "Recipes" are Tested to Establish Optimum Mix
- Test Scale of 1.5 tons/hr Facilitates Improved Scale-Up Cost Analysis
- Unit is Skid-Mounted and Contained in One 20-ft. Shipping Container
- Test System is Autonomous of Plant Support and Stand-Alone

Summary

Circumix Dense Slurry Technology Effectively Addresses all of the Challenges Presented by the Proposed CCR and ELG Rules for a Cost that is Less than Traditional Dry Ash Management

Contact Information

Thank You for Your Time

For More Information, Please Contact NAES

Dale Timmons, R.G. Program Manager Business Development Direct: (425) 961-4697 Fax: (425) 961-4646 Cell: (206) 228-3783

NAES Corporation 1180 NW Maple St., Suite 200 Issaquah, WA 98027

> www.naes.com Dale.Timmons@naes.com

