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Renewable Power 

Generation

Biomass (2008)

 55,875 GWhr total

 38,789 wood and 

wood wastes

 2,036 agricultural 

residues, sludge

 8,460 MW MSW

 6,590 landfill gas

 Classes:

 Dedicated

 Co-fired

» Co-mingled

» Separate injection
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Issues to Consider

 Fuel collection, storage, 
processing and handling

 Combustion

 Combustion stability

 Burnout

 Temperature / Heat transfer

 Efficiency

 Emissions

 Carbon Dioxide

 Sulfur Oxides
 Mercury

 Fine Particles

 Nitrogen Oxides

Operational Impacts

 Slagging / Fouling
 Catalyst deactivation

 Fly-ash properties

 Corrosion

 Economics

 Policy



Biomass Combustion

 Combustion impacted by:

 Particle drying and heat-up

 Volatile yield

 Devolatilization rate

 Char oxidation rate

 Relative to coal, woody biomass has

 Larger and less spherical particles

 More moisture

 Less ash

 More volatiles and less fixed carbon (char)

 Lower heating value (due mostly to higher moisture)

 Higher variability in ash content and composition



Biomass Emissions

 Emission reductions are greatest                         

benefit of biomass co-firing

 CO2 – consider net zero emissions

 SO2 – lower because biomass is a very low sulfur fuel

 Hg – lower because biomass is a very low mercury fuel

 Fine particulates – co-firing tests have shown minimal 

impact

 NOx – complex process, but reductions can be significant



Biomass NOx

 Fuel NOx from volatile products

 Based on fuel nitrogen content, pyrolysis yield, and rate of 

volatile nitrogen release (relative to fuel)

 Biomass volatile content higher than coal, can produce early 

fuel-rich zone in flame and reduce subsequent fuel NOx

 Biomass volatile nitrogen evolves more rapidly than total 

volatiles and tends to form NHi instead of HCN

 Fuel NOx from char oxidation

 Based on char yield and NOx in gas-phase

 Biomass impact low due to low char N

 Thermal NOx

 Based on gas temperature

 Biomass higher moisture produces lower flame temperature 

Fuel 
Nitrogen

N2
Volatile N 
(HCN, NHi)

Char N

NOOxidizing

Reducing



NOx Reduction: 

Seward Co-firing

Tillman and Harding (2004)



Operational Impacts

 Slagging and Fouling

 Depends on deposition rates and                                              

ash chemistry (CaO, K2O, SiO2)

 100% biomass systems more susceptible

 Co-firing less susceptible (minimal impacts with <10 wt%) 

 Urban wood waste has higher slagging/fouling potential 

than naturally grown or wood products

 Potential for corrosion and SCR catalyst impacts 

with 100% firing; low ash with co-firing mitigates 

impacts



Predictive Technical 

Assessment

 Application of co-firing should be                              

assessed on a case-by-case basis

 Characterization of combustion system

 Characterization of biomass fuel

 Appropriate modeling of biomass firing

 Combustion (CFD) modeling can be used to:

 Characterize current system

 Assess different biomass injection strategies and fuels

 Track dispersion, reaction, deposition of coal and biomass

 Predict combustion, emissions, and slagging/fouling



Full-scale NOx 

Application

 150 MW front wall-fired boiler

 16 Low NOx burners in 4 elevations and OFA

 Co-firing scenarios

 7% Green Wood Chips based on heat input

 Separate center injection

» Multi-fuel burners in “C” row.

» Multi-fuel burners at center 2 locations in B & C rows

 Determine impacts on

 NOx reduction

 Unburned carbon-in-flyash

 CO
 

A

B

C

D



Modeling Results

 Results look favorable, 

but how transferable?



NOx Concentration

Base C Row Center

 Co-fired burners 

actually produced 

more NOx

 Why did NOx go 

down?

NOx 

ppm



Wood Particle Paths

3.85 mm particle 

trajectories

C Row region is 

fuel lean even 

though “fired” 

fuel-rich

Equivalence 

Ratio

 Large, green (wet) wood 

chips delayed volatile 

release, creating:

 Fuel-lean upper burner 

zone which increased NOx

 Fuel-rich lower furnace 

which reduced NOx from 

coal-fired burners

 Modeling non-spherical, 

wet particles with wood 

kinetics important



Biomass Particle Combustion 

(Cyclones & Stokers)

 Large particles are modeled 

as a series of concentric 

spherical shells of equal 

mass

 The number of shells is 

dependent on the particle 

diameter

 External radiative and 

convective heat transfer are 

only to the outermost shell

 Conductive heat transfer 

occurs between each shell 

and the shells immediately 

adjacent
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Model Example

 Temperature increase and 

drying of outer shell occurs most 

rapidly; inner shell most slowly

 While moisture is present in a 

shell, the temperature of that 

shell is limited to boiling 

temperature (373 K)

 The temperature of the outer 

shell is well above the boiling 

temperature while moisture is still 

present in the inner shell
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Drag on Non-

Spherical Particles

Particle drag increases with 

increasing deviation from 

spherical shape

Particle drag is calculated in terms of a shape factor  (Haider and Levenspiel, Powder 

Technology, 58 (1989), pp63-70.

= 
Surface area of sphere of same volume

Surface area of particle
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Cyclone Boiler Application

Particle 

Moisture

> 10%

0%

Coal Only 5% Wood 

Co-Fire

10% Wood 

Co-Fire

15% Wood

Co-Fire

Mass Weighted 

Average of All Shell 

Moisture Contents



5% Wood 10% Wood 15% Wood 

Co-Fire Co-Fire Co-Fire

Temperature 2332° F. 2355° F. 2354° F. 2363° F.

CO 

Concentration
3761 ppm 4876 ppm 4951 ppm 5373 ppm

O2 

Concentration
3.48% 3.41% 3.48% 3.40%

NOx 0.41 MBtu/hr 0.41 MBtu/hr 0.40 MBtu/hr 0.38 MBtu/hr

Carbon in Fly 

Ash
69% 62% 58% 56%

Fraction Ash 

Escaping
15% 17% 20% 20%

Total Wall Heat 

Transfer
694,741 Btu/hr 694,659 Btu/hr 669,966 Btu/hr 639,127 Btu/hr

Coal Only

Furnace Exit 

Predictions

Vertical Exit 

Plane

 Predicted furnace exit NOx and carbon in fly ash decrease with wood co-

firing

 The fraction of ash escaping the furnace, CO concentration, and 

temperature increase with wood co-firing

 Wall heat transfer decreases with increasing fraction of wood co-firing (the 

decreased sooting propensity of wood vs. coal results in less radiative heat 

transfer to the walls)



Furnace Deposition

 Predict deposition impacts w/ CFD

 Deposition patterns and rates

 Size, shape, composition of fly ash

 Fly ash viscosity = f(composition, 

temperature, local stoichiometry)

 Deposit sintering = f(deposit mass, 

composition, temperature)

 Unit Summary

 800 MW opposed wall-fired unit

 56 burners firing 55/45% PRB/Bit.  coal 

blend



Predicted Deposition 

Impacts

Deposition rate Deposit thickness Deposit sintering Deposit resistance

 6-hours after build-up

 Deposits change performance

Initial incident heat flux 6-hr incident heat flux Initial net heat flux 6-hr net heat flux

Texit up 80 °F

NOx up 18%



Summary

 Biomass has a role in future power generation, but 
current applications are limited

 Key technical issues for moving forward include 
 Fuel processing and handling
 Combustion impacts
 Emissions
 Operational impacts

 Case-by-case characterization of system, fuel and 
injection strategies can help assess applicability 

 Combustion modeling can provide assessment of 
combustion, emissions and operational impacts


