Assessing Combustion and Emission Impacts of Firing Biomass for Power Generation

M. Cremer, K. Davis, B. Adams

Hot Topic Hour

REACTION ENGINEERING INTERNATIONAL

77 West 200 South, Suite 210 Salt Lake City, UT 84101 TEL: +1 (801) 364-6925 FAX: +1 (801) 364-6977 http://www.reaction-eng.com Co-Firing Biomass, Sewage Sludge, Municipal Waste

August 5, 2010

Renewable Power Generation

er

Official Energy Statistics from the U.S. Government

Biomass (2008)

- → 55,875 GWhr total
 - 38,789 wood and wood wastes
 - 2,036 agricultural residues, sludge
 - 8,460 MW MSW
 - 6,590 landfill gas
- Classes:
 - Dedicated
 - **Co-fired**
 - » Co-mingled
 - Separate injection }>

Legislative Driving Force

REACTION

INTERNATIONAL

Efficiency of Biomassfired Boilers

Issues to Consider

Fuel collection, storage, processing and handling

Combustion

- Combustion stability
- Burnout
- Temperature / Heat transfer
- Efficiency

Emissions

- Carbon Dioxide
- Sulfur Oxides
- Mercury
- Fine Particles
- Nitrogen Oxides

Operational Impacts

- Slagging / Fouling
- Catalyst deactivation
- Fly-ash properties
- Corrosion
- Economics
- Policy

Biomass Combustion

Combustion impacted by:

- Particle drying and heat-up
- Volatile yield
- Devolatilization rate
- Char oxidation rate

→ Relative to coal, woody biomass has

- Larger and less spherical particles
- More moisture
- Less ash
- More volatiles and less fixed carbon (char)
- Lower heating value (due mostly to higher moisture)
- Higher variability in ash content and composition

Biomass Emissions

Emission reductions are greatest benefit of biomass co-firing

- CO₂ consider net zero emissions
- SO₂ lower because biomass is a very low sulfur fuel
- Hg lower because biomass is a very low mercury fuel
- Fine particulates co-firing tests have shown minimal impact
- NO_x complex process, but reductions can be significant

- Fuel NOx from volatile products
 - Based on fuel nitrogen content, pyrolysis yield, and rate of volatile nitrogen release (relative to fuel)
 - Biomass volatile content higher than coal, can produce early fuel-rich zone in flame and reduce subsequent fuel NOx
 - Biomass volatile nitrogen evolves more rapidly than total volatiles and tends to form NH_i instead of HCN

Fuel NOx from char oxidation

- Based on char yield and NOx in gas-phase
- Biomass impact low due to low char N

Thermal NOx

- Based on gas temperature
- Biomass higher moisture produces lower flame temperature

NOx Reduction: Seward Co-firing

Tillman and Harding (2004)

REACTION ENGINEERING INTERNATIONAL

Operational Impacts

Slagging and Fouling

 Depends on deposition rates and ash chemistry (CaO, K₂O, SiO₂)

- 100% biomass systems more susceptible
- Co-firing less susceptible (minimal impacts with <10 wt%)
- Urban wood waste has higher slagging/fouling potential than naturally grown or wood products
- Potential for corrosion and SCR catalyst impacts with 100% firing; low ash with co-firing mitigates impacts

Predictive Technical Assessment

- Application of co-firing should be assessed on a case-by-case basis
 - Characterization of combustion system
 - Characterization of biomass fuel
 - Appropriate modeling of biomass firing

Combustion (CFD) modeling can be used to:

- Characterize current system
- Assess different biomass injection strategies and fuels
- Track dispersion, reaction, deposition of coal and biomass
- Predict combustion, emissions, and slagging/fouling

Full-scale NOx Application

- → 150 MW front wall-fired boiler
- 16 Low NOx burners in 4 elevations and OFA
- Co-firing scenarios
 - 7% Green Wood Chips based on heat input
 - Separate center injection
 - » Multi-fuel burners in "C" row.
 - » Multi-fuel burners at center 2 locations in B & C rows
- Determine impacts on
 - NO_x reduction
 - Unburned carbon-in-flyash
 - CO

Modeling Results

Results look favorable, but how transferable?

Proximate Analysis	<u>Coal</u>	<u>Biomass</u>
Volatiles	35.70%	48.47%
Fixed Carbon	51.69%	7.68%
Moisture	6.04%	43.47%
Ash	6.57%	0.39%
HHV (Btu/lb)	132701	4667
<u>Ultimate Analysis</u>		
с	72.80%	28.12%
н	5.69%	3.52%
0	6.10%	24.37%
Ν	1.50%	0.07%
S	1.30%	0.06%
Moisture	6.04%	43.47%
Ash	6.57%	0.39%

	Location	Temp. (°F)	O2 (%)	CO (ppm)	%Carbon- in-flyash	NOx (ppm)
Plant Estimates	Nose	2300	<u>n</u> ∕a	1500	<u>n</u> ∕a	<u>n</u> ∕a
	Economizer Exit	<u>n</u> /a	3.5	<u>n</u> ∕a	<u>n</u> ∕a	300
Baseline	Nose	2250	3.9	2930		297
	Furnace Exit	1920	3.7	340	16	292
"C" Row Biomass	Nose	2240	4.0	3370		269
	Furnace Exit	1940	3.8	140	10	264
Center 4 Biomass	Nose	2260	3.9	2020		264
	Furnace Exit	1940	3.7	110	12	267

REACTION ENGINEERING INTERNATIONAL

NOx Concentration

- Co-fired burners actually produced more NOx
- Why did NOx go down?

Wood Particle Paths

- Large, green (wet) wood chips delayed volatile release, creating:
 - Fuel-lean upper burner zone which increased NOx
 - Fuel-rich lower furnace which reduced NOx from coal-fired burners
- → Modeling non-spherical, wet particles with wood kinetics important

3.85 mm particle trajectories

Biomass Particle Combustion (Cyclones & Stokers)

- Large particles are modeled as a series of concentric spherical shells of equal mass
- The number of shells is dependent on the particle diameter
- External radiative and convective heat transfer are only to the outermost shell
- Conductive heat transfer occurs between each shell and the shells immediately adjacent

Drop Tube Shell Model Example

- Temperature increase and drying of outer shell occurs most rapidly; inner shell most slowly
- While moisture is present in a shell, the temperature of that shell is limited to boiling temperature (373 K)
- The temperature of the outer shell is well above the boiling temperature while moisture is still present in the inner shell

Three shell example with K = 0.12 W/m/K(wood conductivity)

Drag on Non-Spherical Particles

Particle drag is calculated in terms of a shape factor φ (Haider and Levenspiel, *Powder Technology*, 58 (1989), pp63-70.

Non-Spherical Drag Model Verification

air blast spreader

Cyclone Boiler Application

Furnace Exit Predictions

		5% Wood	10% Wood	15% Wood
	Coal Only	Co-Fire	Co-Fire	Co-Fire
Temperature	2332° F.	2355° F.	2354° F.	2363° F.
CO Concentration	3761 ppm	4876 ppm	4951 ppm	5373 ppm
O2 Concentration	3.48%	3.41%	3.48%	3.40%
NOx	0.41 MBtu/hr	0.41 MBtu/hr	0.40 MBtu/hr	0.38 MBtu/hr
Carbon in Fly Ash	69%	62%	58%	56%
Fraction Ash Escaping	15%	17%	20%	20%
Total Wall Heat Transfer	694,741 Btu/hr	694,659 Btu/hr	669,966 Btu/hr	639,127 Btu/hr

- Predicted furnace exit NOx and carbon in fly ash decrease with wood cofiring
- The fraction of ash escaping the furnace, CO concentration, and temperature increase with wood co-firing
- Wall heat transfer decreases with increasing fraction of wood co-firing (the decreased sooting propensity of wood vs. coal results in less radiative heat transfer to the walls)

Furnace Deposition

Predict deposition impacts w/ CFD

- Deposition patterns and rates
- Size, shape, composition of fly ash
- Fly ash viscosity = f(composition, temperature, local stoichiometry)
- Deposit sintering = f(deposit mass, composition, temperature)

➔ Unit Summary

- 800 MW opposed wall-fired unit
- 56 burners firing 55/45% PRB/Bit. coal blend

Predicted Deposition Impacts

→ 6-hours after build-up **Deposits change performance**

Initial incident heat flux 6-hr incident heat flux

Initial net heat flux

Deposit resistance

6-hr net heat flux

T_{exit} up 80 °F **NOx up 18%**

- Biomass has a role in future power generation, but current applications are limited
- → Key technical issues for moving forward include
 - Fuel processing and handling
 - Combustion impacts
 - Emissions
 - Operational impacts
- Case-by-case characterization of system, fuel and injection strategies can help assess applicability
- Combustion modeling can provide assessment of combustion, emissions and operational impacts

