INDA Filtration Conference, Chicago November 17th, 2015

MANN+HUMMEL GMBH Dr. Andreas Scope, Thomas Heininger



#### Outline





#### ►► Outline





#### **Standard cabin air filter types**





#### Media approaches for good separation efficiency at low pressure drop

| Electret media                                                       | Nanofiber media                                                 | Composite media                                                        |
|----------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|
| <ul><li>Electrostatic charge</li><li>High air permeability</li></ul> | <ul><li>Sub-micron fibers</li><li>Typically top-layer</li></ul> | <ul> <li>Gradient structure</li> <li>Usage of electrete and</li> </ul> |
| Sensitive to heat, humidity                                          | application                                                     | mechanical separation                                                  |

- Surface filtration effect
- effects



and fluids













#### Performance Characteristics – looking for a specific optimum





#### **b** Combi filter spec comparison for two succeeding car platforms





- Significant increase of separation efficiencies required
- Pressure drop has to remain at the same level



#### ►► Outline





Worldwide distribution of PM2.5 concentrations



2

5

10

20 50 PM<sub>2.5</sub> [μg/m<sup>3</sup>] 100

200



**Cabin air filter media to meet high PM2.5 separation efficiencies** 





Standard filter media with medium separation efficiency

Fine dust filter media for highly efficient PM2.5 retention



#### Practical setup for testing PM2.5 removal efficiency



From standardized lab tests acc. to DIN/ISO...





...to in-cabin PM concentration measurements



#### Practical test results (extremely high PM2.5 concentrations)



| PM2.5<br>concentration<br>[µg/m3] | PM2.5<br>before | PM2.5<br>after | PM2.5 conc.<br>reduced by | Remaining<br>PM2.5<br>percentage |
|-----------------------------------|-----------------|----------------|---------------------------|----------------------------------|
| PM2.5 filter element              | 1334.3          | 8.9            | 99.3%                     | 0.7%                             |
| Standard filter element           | 570.8           | 44.4           | 92.3%                     | 7.7%                             |

critical PM2.5 conc. on map shown on slide 10:  $\leq$  200 µg/m<sup>3</sup>



#### Practical results – creating comparable conditions

Idea for standardizing cabin-tests using a test chamber

- Setup similar to recirculation mode in a car cabin
- Usage of a sealed test chamber with a filter and blower inside
- Start with a well-defined initial PM2.5 concentration in the chamber
- PM2.5 concentration sampling and recording the "decline curve" over the time





▶▶ PM1, PM2.5 and PM10 distributions in ambient air





|                          | Ambient Air [µg/m³]     |                   |                 |
|--------------------------|-------------------------|-------------------|-----------------|
| Road section             | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub> | PM <sub>1</sub> |
| 1: St2111 "Country road" | 20.2                    | 19.1              | 18.3            |
| 2: Dingolfing "City"     | 26.2                    | 24.5              | 23.6            |
| 3: A92 "Highway"         | 18.0                    | 16.5              | 15.9            |
| Whole road section       | 20.5                    | 18.9              | 18.2            |
| WHO Suggestion           | 50                      | 25                |                 |
| (Daily average value)    | 50                      | 23                | -               |

Photo: GRIMM

 Fine particles (PM1) are strongly represented in ambient air



#### **Test of the fine particle concentrations in a truck cabin**





#### ►► Outline





#### **>>** Typical gases for cabin air filter adsorption tests

| test gas        | represents                         | test gas concentration |
|-----------------|------------------------------------|------------------------|
| n-butane (      | VOC (volatile organic compounds)   | 80 ppm <sub>v</sub>    |
| toluene         | Aromatic hydrocarbons e.g. benzene | 80 ppm <sub>v</sub>    |
| SO <sub>2</sub> | Emission from traffic & industry   | 30 ppm <sub>v</sub>    |
| NO <sub>x</sub> | Emission from traffic & industry   | 30 ppm <sub>v</sub>    |
| Aldehydes       | Diesel exhaust, cigarette smoke    | 30 ppm <sub>v</sub>    |
| NH <sub>3</sub> | Agriculture emission               | 30 ppm <sub>v</sub>    |



#### Chinese standard GB/T 27630 – VOC concentration limits



#### **Conditions:**

- Temperature: 25 ± 1 °C
- Relative humidity: 50 %
- Vehicle stopped, all vehicle doors, windows and passenger compartment vents closed, engine and air conditioning deactivated

| 本电子版为发布稿。请以中国环境科学出版社出版的 | NO. | Name         | Concentration<br>limits, mg/m3 | Odor                     |
|-------------------------|-----|--------------|--------------------------------|--------------------------|
|                         | 1   | Benzene      | ≤0.11                          | Strong aromatic odor     |
|                         | 2   | Toluene      | ≤1.10                          | Aromatic odor            |
|                         | 3   | Xylene       | ≤1.50                          | Aromatic odor            |
|                         | 4   | Ethylbenzene | ≤1.50                          | Aromatic odor            |
|                         | 5   | Styrene      | ≤0.26                          | Sweet smell              |
|                         | 6   | Formaldehyde | ≤0.10                          | Pungent, irritating odor |
|                         | 7   | Acetaldehyde | ≤0.05                          | Irritating odor          |
|                         | 8   | Acrolein     | ≤0.05                          | Piercing, acrid smell.   |

Confidential Refer to protection notice ISO 16016



#### Investigations on in-car VOC concentrations in China





#### Exemplary results of a test drive in China (<u>no</u> cabin air filter in use)





#### **Exemplary comparison of VOC conc. using different cabin air filters**



Confidential Refer to protection notice ISO 16016



#### **TVOC and PM2.5 concentrations using advanced PM2.5 combi filter**



Confidential Refer to protection notice ISO 16016



#### Outline





#### Additional protection against allergens



American Academy of Allergy Asthma and Immunology (AAAAI): Allergy Statistics, 2012.

Increasing part of population suffering from allergies



#### Additional protection against allergens



Grote, M. et al.: Release of allergen-bearing cytoplasm from hydrated pollen: A mechanism common to a variety of grass (Poaceae) species revealed by electron microscopy. J. Allergy Clin. Immunol. 108,109-115, 2001.

Grote, M. et al: Expulsion of allergen-containing materials from hydrated rye grass (Lolium perenne) pollen revealed by immunogold field emission scanning and transmission electron microscopy. J Allergy Clin Immunol. 105(6), 1140-1145, 2000.

- Increasing part of population suffering from allergies
- Allergen proteins released from e.g. pollen are a cause for allergic reactions



#### Anti-allergen function of polyphenols ••





Reduction of allergen effect (e.g. grass pollen allergen): > 95% (tested by external institutes acc. to ELISA method)





- Unfavorable conditions can lead to growth of microorganisms on dirt layer
- Target: reduction of microbial growth, especially mold growth



#### Anti-microbial functionality



- Unfavorable conditions can lead to growth of microorganisms on dirt layer
- Target: reduction of microbial growth, especially mold growth
- Anti-microbial equipment reduces growth of microorganisms by > 98% (acc. to tests of external institutes)
- Significant reduction of odor issues caused by microorganisms



#### **>>** State of the art cabin air filter media featuring additional functions





#### ►► Outline



#### Summary and outlook

- Increasing demand for better cabin air filter separation and adsorption performance, especially for PM2.5 and VOC
- By using new media compositions significantly better performance can be achieved without affecting the general differential pressure and dust holding capacity levels
- With advanced adsorbent materials and additional biofunctional treatments, an extensive protection against unpleasant odors, mold growth and allergen input into the clean air can be realized
- Practical tests help to understand the impact on in-cabin concentrations and to improve filter media properties











►► Thank you for your attention!

