

Measurement of Corrosion Rate Associated with Halogen for Hg Oxidation

Mandar Gadgil

B&W PGG

Steve Feeney

B&W PGG

Murray Abbott

Chem-Mod LLC

Jacob Beutler

Reaction Engineering International

2015 Energy, Utility & Environmental Conference San Diego, California February 16-18, 2015

Presentation Agenda

Halogens for Mercury Oxidation

Balance of Plant Effects of Halogen Injection

Corrosion Testing by ECN Technique

Test Observations

Mitagent Benefits

Periodic Table of the Elements

Mercury Emission Control

- MATS rule: Coal-fired EGUs must achieve stack Hg emissions of 1.2 lb/TBtu or less for Bit. and Sub-Bit. coals
- Mercury oxidation by halogen injection and removal of the oxidized Hg either by FGD's or by sorbents is one of the most costeffective methods for Hg emission control
- Halogen injection is very simple, and reliable method for Hg oxidation
- Necessary to consider Balance-of-Plant effects with the long-term use of halogens

Halogens for Hg Oxidation

- Chlorine, Bromine, and Iodine are main halogens used for Hg oxidation
- Bromine most widely used (low-cost and effective)
- In furnace, Bromine additives first form HBr(g)
- ➤ Deacon Reaction: $4HBr + O_2 \rightarrow H_2O + 2Br_2$
- \rightarrow Hg +Br₂ \rightarrow HgBr₂ (oxidized Hg)
- Catalytic sites important factor in conversion of HBr to Br₂
- Unconverted hydrogen halide main cause of BoP issues with any halogen (not just Bromine)

Dead Sea

BoP Issues with Halogen for Oxidation

- Higher Bromine (Br) levels in WFGD liquor and waste water is only BoP issue for Eastern Bituminous coals
- Br in water may lead to formation of additional Trihalomethanes (THMs) in downstream water systems
- Air Heater cold-end basket corrosion is most common BoP issue for low-rank coals (PRB, W Bit and Lignite)
- Halogen injection affects Selenium (Se) speciation, resulting in increased gas-phase Se at WFGD inlet, which may increase Se levels in WFGD liquor and waste water

Air Heater Corrosion

- 33 PRB units reported Air Heater (AH) cold- end basket corrosion, while 19 did not (Update on EPRI's Balance of Plant Effects Study of Bromine-Based Mercury Controls, 2014)
- Key difference is Bromine application rate,>100 ppm vs. <100 ppm
- HBr dew-point temperature is ~125°F
- Lowest metal temperatures are experienced during basket rotation back into flue gas stream
- Cold-end AH baskets on PRB-fired units not typically constructed of corrosion-resistant materials or enameled
- It is hypothesized that the corrosion <u>rate</u> is dependent on the Bromine application rate

Corrosion Testing

- Testing was performed on a 80 MW PRB coal fired unit with ESP as AQCS.
- Test Objectives: To investigate effects of halogen type, and halogen injection rate on Hg oxidation and Air Heater corrosion rates
- Data Collection and Analysis: ElectroChemical Noise (ECN) probe, Stack CEMS, and EPA M5 and M30B
- Air Heater metallurgy: Carbon Steel A192, selected because it has lowest corrosion resistance

ECN Probe for Corrosion Testing

Main panel displays real-time corrosion data and temperatures of all probes

Data Acquisition

- → High Sensitivity
- Instantaneous response
- Direct indication of corrosion
- Quantitative measurement
- → Response related to corrosion mechanism

Corrosion Testing - ECN Probe

Un-exposed probe

Deposit build-up following 4-hour period of 25ppm Iodine addition

Test Results

Test ID	% Oxidation	Rate of Corrosion, mils/year	Comparison to Baseline
12/9 Baseline	51.5	0.09*	N/A
12/10 150 ppm Bromine	94.5	1.8*	20 X
12/11 AM 10 ppm lodine	93.1	0.13	Same
12/11 PM 25 ppm lodine	98.5	0.28	2-3 X
12/12 AM 25 ppm Bromine	78.7	0.10	Same
12/12 PM 75 ppm Bromine	83.7	0.27	2-3 X

* Averaged over multiple test periods

Corrosion & Hg Oxidation Vs Br Addition Rate

Observations

- With addition of 10 ppm of lodine, oxidized Hg was 93% with no change in corrosion rate as compared to baseline
- With addition of 25 ppm Bromine to coal, there was no appreciable increase in the corrosion rate
- On 25 ppm to coal basis, Iodine exhibited higher Hg oxidation and higher corrosion rate compared to Bromine
- To achieve 95% Hg oxidation, it was necessary to add 150 ppm Bromine to coal, and rate of corrosion was 20 times higher than baseline
- Data did show that rate of corrosion is function of rate of halogen application to coal
- Mitagent additive can make a significant difference

Mitagent Benefits

- Mitagent is patented coal additive developed by B&W PGG
- Among other benefits, Mitagent can reduce the rate of SCR catalyst deactivation by phosphorous poisoning on staged combustion PRB units
- Mitagent also facilitates efficient use of halogen containing additives for Hg oxidation by catalyzing the Deacon reaction w/o SCR
- This can lead to either reduced halogen injection rate to coal to get similar Hg oxidation or improvement in Hg oxidation with similar halogen injection rate
- Full-scale and pilot-scale test data has demonstrated efficient halogen utilization with Mitagent addition

Bromine Reduction by Mitagent

PRB Unit: Dec 2013

Bromine added to coal (ppm, dry basis)	Mitagent added to coal (lb/hr)	% Oxidized Hg @ Stack (Method 30b)
0	0	38.0
70	0	46.5
100	0	62.5
40	11.4	56.0

Expected Performance Improvement with Mitagent

Condition	% Hg Oxidation	Corrosion Rate @ 120°F, mils/year
25 ppm Bromine	78.7	0.26
Expected Rate 25 ppm Br with Mitagent	90	0.26
10 ppm Iodine	93.1	0.16
Expected Rate 7 ppm I with Mitagent	90	0.15

Mitagent Benefits

- Mitagent reduces injection cost for Iodine by 30-50% while providing same 90+% Hg oxidation levels
- Mitagent further improves Hg oxidation by 20-30% for low Bromine application rates (25 ppm or less)
- Mitagent reduces application rates by 30-50% for high Bromine addition rates (>100 ppm), and therefore associated corrosion risks
- Mitagent use results in significant operating cost reduction by reducing halogen usage
- On going long-term testing indicates no negative effect on boiler or AQCS performance

Questions?

Mandar Gadgil

Babcock & Wilcox
Power Generation Group
20 South Van Buren Avenue
Barberton, OH 44203-0351
330-860-1047
MGadgil@babcock.com

Murray Abbott

Chem-Mod LLC
Manager of Technical Support
2174 Clairmont Drive
Pittsburgh, PA 15241
412-389-3657
Murray_Abbott@ajg.com

