

MANN+HUMMEL Filters for Liquids

MANN+HUMMEL Industrial Filters

The MANN+HUMMEL Group is an international company with its headquarters in Ludwigsburg, Germany. The group employs more than 10,000 people worldwide at more than 41 locations.

The company develops, produces and sells technically complex components and systems for the automotive industry and many other fields. A key area is high quality filtration products for vehicles, engines and industrial applications. The OEM business with global market leaders and producers of vehicles, machines and installations defines the quality and performance of the products. Filters for the international aftermarket are sold under a variety of international brands as well as under the MANN-FILTER brand.

MANN+HUMMEL Industrial Filters

The Industrial Filters Business Unit has its headquarters in Speyer, Germany. The business unit is specialized in meeting the special requirements of off-highway vehicles and engine applications, compressed air and vacuum technology, mechanical engineering and plant construction.

MANN+HUMMEL Industrial Filters offers high performance for these fields and other fields which have a requirement for the filtration and separation of air, gas and liquids.

Liquid filters for many applications

Modern, high-performance vehicles, machines, equipment and engines require filters and components with a corresponding performance. This catalogue provides an overview of our filters for liquids and the matching accessories, naturally all in the standard MANN+HUMMEL OEM quality.

Our customers come from many varied fields such as:

- Construction machines
- Agricultural machines
- Compressors
- Mechanical engineering
- Engine and drive systems
- Commercial and special vehicles, etc.,

This extensive experience enables MANN+HUMMEL to offer individual concepts and solutions for special customer requirements.

Also near to you

Our production facilities and sales offices at a number of European locations, in the USA, South America and in Asia enable the analysis of technical questions on site. One of our subsidiary companies or representatives is also sure to be near to you to enable easy contact.

How to find your contact partner:

In order to establish your contact partner at MANN+HUMMEL or make contact with one of our representatives, just call

Tel.: +49 (62 32) 53-80 Fax: +49 (62 32) 53-88 99

and tell us your area of operations. We will then immediately put you in contact with one of our specialised sales teams.

You can find us in the internet at:

www.mann-hummel.com E-Mail: if.info@mann-hummel.com

Contents

Company profile	Page	2
Product overview	Page	4
Spin-on oil filters	Page	7
In-line oil filters	Page	15
Overview of oil filter heads	Page	18
Oil filter elements	Page	31
Strainer filters	Page	41
Centrifuges	Page	45
Fuel filters	Page	55
Spin-on fuel filters	Page	58
In-line fuel filters	Page	63
Overview of fuel filter heads	Page	66
PreLine in-line fuel filter	Page	68
Fuel filter elements	Page	75
Gap-type filters	Page	79
Plate gap-type filters	Page	82
Wire gap-type filters	Page	84
Gap-type tube filters	Page	85
Accessories for liquid filters	Page	87
Technical annex	Page	93
Filter terminology	Page	94
Oil and fuel viscosities	Page	96
List of contents according to order numbers	Page	98
Conversion table (back cover)		

Product overview

Spin-on filters

W type

Page 10-12

Spin-on filters as full-flow filters are used for the filtration of oil. The raw oil flows in through the outside holes in the cover plate of the filter and leaves again through the central thread. Depending on the requirements, the spin-on filters are equipped with bypass valves, nonreturn valves, ascending pipes or similar.

WP type

Page 14

Partial-flow filters or a combination of full-flow and partialflow filters as a spin-on filter. The dirty oil flows in through the outer holes in the filter mounting plate. In the filter the oil flow is divided into a full and partial flow and then leaves on the filtered side with different degrees of filtration fineness.

WD, WH type Page 12+13

Spin-on filters similar to the W type but designed for higher operating pressures.

WK type Page 60+61

Spin-on filters similar to the W types but mainly used for fuel filtration.

WDK type Page 60+61

Spin-on filters similar to the WK type but designed for higher operating pressures.

PL type

Page 69

Spin-on filter for the PreLine® preliminary fuel filter.

Product overview

In-line filters

W, WD type Page 20-31

WK, WDK type Page 70-74

Spin-on filters for use with inline filters with filter heads.

Overview of oil filter heads Page 18+19

Overview of fuel filter heads Page 66+67

Filter elements

7890

These are metal-free and especially environmentallyfriendly fuel filter elements mainly used with in-line injection pumps. For multi-stage filters the BFU type is always used as a preliminary filter.

HD type

Page 36-38

Oil filter elements for higher pressures, especially suitable for hydraulic applications.

H type

Page 33-35

Housing filter elements only for use in the full flow of the liquid.

P type

Page 77

Mainly used for the fine filtration of fuel.

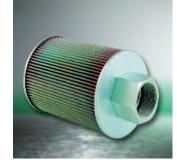
HU type

Page 39

Especially environmentallyfriendly metal-free oil filter elements.

PF type

Page 40


Mainly used for filtration of the partial oil flow.

Product overview

Strainer filters Page 41

Strainer filters are used as a cost-effective solution for the pre-filtration of liquids or as a protection filter. They have a low flow resistance and filter liquids through particle separation on the strainer surface.

Centrifuges Page 45

Centrifuges have an external housing cover and a central spindle around which a rotor turns at high speed. The resulting centrifugal force serves to separate the finest particles (soot) from the lube oil. Centrifuges are partialflow filters and are operated in combination with a full-flow filter.

Gap-type filters Page 79

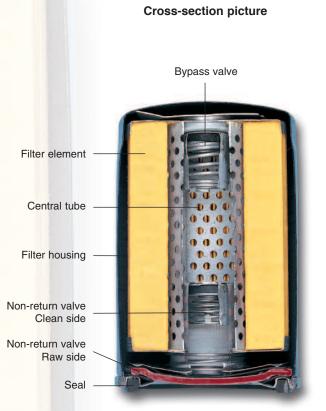
Gap-type filters always find application when coarse particles have to be separated from heavily contaminated liquids. These are surfacetype filters. During normal operation a filter cake forms which is cleaned away manually or with the support of a motor.

MANN+HUMMEL Spin-on oil filters

MANN+HUMMEL Spin-on oil filters

MANN+HUMMEL spin-on filters are used for the filtration of lube oils, hydraulic oils and coolants in a variety of applications. MANN+HUMMEL has been a leading producer worldwide of spin-on filters for more than twenty years. The filters are distributed under the MANN-FILTER brand and a number of customer brands.

The advantages at a glance:


- Available with a variety of filter media
- Efficient separation and high dirt holding capacity with minimal pressure drop
- Robust, corrosion-protected housing with high pulsation and pressure stability
- Improved flow geometry
- Bypass valves with clearlydefined opening characteristics and leak-free closing
- Undetachable seals
- Stable central tube resistant to collapse
- Non-return valve with minimal pressure drop

Design

The spin-on filter consists of a robust metal housing with a filter element fitted inside. Depending on the application, the spin-on filter can be equipped with various components such as a different filter medium, a non-return valve, a bypass valve, etc.. The liquid to be filtered flows into the cover plate through concentric openings, flows through the filter element and finally the cleaned liquid exits through the central connection. An undetachable seal integrated in the cover plate ensures optimum sealing to the outside under all operating conditions.

Maintenance

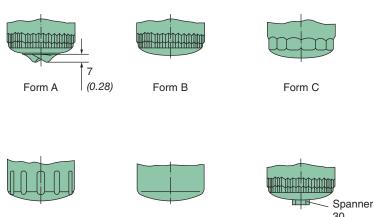
The time for maintenance is usually defined by the engine or machine manufacturer. Maintenance simply requires replacement of the complete spin-on filter. The spin-on filter can easily be removed using a MANN+HUMMEL filter wrench (see page 88).

MANN+HUMMEL Spin-on oil filters

Oil filters

The W and WD type MANN+HUMMEL spin-on filters are mostly used for the filtration of oil as full-flow filters, whereby the complete flow of oil flows through the filter. As an option, a bypass valve can be fitted which opens for cold starts to ensure there is always an adequate flow of oil.

On request an integrated non-return valve on the raw and clean sides prevents emptying of the spin-on filter when the engine is not in operation. Thus when the engine starts the lube oil reaches the lubrication points more quickly.


Partial-flow filter

The WP type partial-flow filter is a spin-on filter from MANN+HUMMEL fitted with a very fine medium. The amount of fine particles in the oil is reduced leading to less engine wear. At the same time there is a positive influence on the pumping characteristics of the oil.

In addition to partial-flow filters the MANN+HUMMEL product range also includes a combination of a full-flow/ partial-flow filters (WP type, see page 14).

Types of spin-on filters

The dimension tables refer to these forms.

Form D

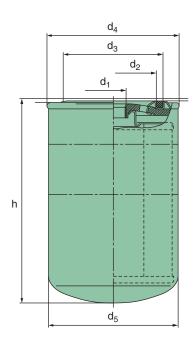
Form E

Spanner size 30 Form F

W type **Oil full-flow filters**

The table below lists examples from our ra filters. Many other val with other media, valv equipment, seal mate release devices, etc., also available.

nal Dimensions in mm <i>(Dimensions in inche</i>	s) Filter fineness acc. to ISO 16 889	Non- return	By- pass	Permissible operating	Туре	
4	acc. to ISO 16 889 [μm (c)] * with				(see	
	acc. to ISO 16 889	return	pass	operating		

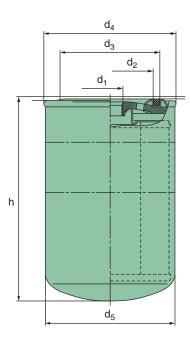

1

MANN- FILTER	Nominal flow rate [l/min]	Dimensio	ons in r	nm <i>(Di</i>	mensio	ons in i	inches)	Filter fir acc. to IS [µm (c)] 50%	O 16 889	Non- return valve	By- pass valve	Permissible operating pressure	Type (see page
	[gpm]	d ₁	d ₂	d ₃	d ₄	d ₅	h	separation	efficiency	[bar]	[bar]	[bar]	9)
W 712/20	15 <i>(</i> 3.96)	3/4" - 16 UNF	62 <i>(2.44)</i>	71 <i>(2.80)</i>	80 <i>(3.15)</i>	76 <i>(</i> 2.99)	79 <i>(</i> 3.11)	20	> 50	-	2.5	14	С
W 712/4	20 <i>(</i> 5.28)	3/4" - 16 UNF	62 (2.44)	71 <i>(2.80)</i>	80 <i>(3.15)</i>	76 (2.99)	93 <i>(</i> .66)	20	> 50	0.12	2.5	14	С
W 712/52	15 <i>(</i> 3.96)	3/4" - 16 UNF	62 <i>(2.44)</i>	71 <i>(2.80)</i>	80 <i>(3.15)</i>	76 <i>(2.99)</i>	79 (3.11)	14	38	0.12	2.5	14	С
W 719/14	25 (6.61)	3/4" - 16 UNF	62 <i>(2.44)</i>	71 <i>(2.80)</i>	80 <i>(</i> .15)	76 (2.99)	123 <i>(4.84)</i>	20	> 50	0.12	2.5	14	С
W 719/30	25 (6.61)	3/4" - 16 UNF	62 <i>(2.44)</i>	71 <i>(2.80)</i>	80 <i>(3.15)</i>	76 <i>(2.99)</i>	123 <i>(4.84)</i>	14	38	0.12	2.5	14	С
W 920	30 <i>(7.93)</i>	3/4" - 16 UNF	62 (2.44)	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	95 <i>(3.74)</i>	20	> 50	0.12	2.5	14	А
W 920/7	30 <i>(7.93)</i>	3/4" - 16 UNF	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	95 <i>(3.74)</i>	14	38	0.12	1.5	14	В
W 930	30 <i>(7.93)</i>	3/4" - 16 UNF	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	114 <i>(4.49)</i>	20	> 50	0.12	2.5	14	А
W 930/21	30 (7.93)	3/4" - 16 UNF	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	114 <i>(4.49)</i>	14	38	0.12	3.0	14	В
W 940	50 (13.21)	3/4" - 16 UNF	62 <i>(2.44)</i>	71 (2.80)	96 <i>(3.78)</i>	93 <i>(</i> .66)	142 <i>(</i> 5.59)	20	> 50	0.12	2.5	14	А

* In comparison to the previously used calibration, the new calibration with the same filter results in a lower filter fineness with small particles.

W type

Full-flow oil filters



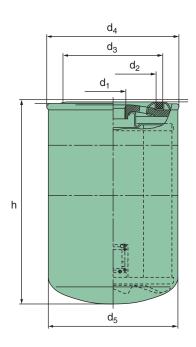
MANN- FILTER	Nominal flow rate [l/min]	Dimensio	ons in n	nm <i>(Di</i>	mensio	ons in i	inches)	Filter fir acc. to IS([µm (c)] 50%	O 16 889	Non- return valve	By- pass valve	Permissible operating pressure	Type (see page
	[gpm]	d ₁	d ₂	d_3	d ₄	d_5	h	separation	efficiency	[bar]	[bar]	[bar]	9)
W 940/51	50 (13.21)	G 3/4"	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	142 <i>(</i> 5.59)	14	38	-	2.5	14	В
W 950	60 (15.85)	1"- 12 UNF	62 <i>(2.44)</i>	71 (2.80)	96 <i>(3.78)</i>	93 <i>(3.66)</i>	170 <i>(</i> 6.69)	20	> 50	0.12	2.5	14	В
W 950/17	60 <i>(15.85)</i>	1"- 12 UNF	62 (2.44)	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	170 <i>(6.69)</i>	14	38	0.12	1.6	14	В
W 962/2	75 (19.82)	1"- 12 UNF	62 <i>(2.44)</i>	· /	96 <i>(3.78)</i>	93 <i>(3.66)</i>	210 <i>(</i> 8.27)	14	36	0.12	2.5	14	А
W 962/6	75 (19.82)	1"- 12 UNF	62 (2.44)	. ,	96 <i>(3.78)</i>	93 <i>(3.66)</i>	210 <i>(</i> 8.27)	20	> 50	0.12	2.5	14	F
W 1160	50 (13.21)	M 30x2		• •	110 <i>(4.33)</i>	• •	178 <i>(7.01)</i>	14	38	-	2.5	14	А
W 11 102	100 <i>(26.42)</i>	1 1/8"- 16 UN	93 <i>(3.66)</i>	103 <i>(4.06)</i>	110 <i>(4.33)</i>	108 <i>(4.25)</i>	260 (10.24)	20	> 50	0.12	2.5	14	А
W 11 102/4	75 (19.82)	1 1/8"- 16 UN	93 <i>(3.66)</i>	103 <i>(4.06)</i>	110 <i>(4.33)</i>	108 <i>(4.25)</i>	260 (10.24)	14	36	0.12	2.5	14	А
W 1374/2	85 (22.46)	G 1 1/4"	100 <i>(3.94)</i>	111 <i>(4.37)</i>	140 <i>(</i> 5.51)	136 <i>(</i> 5.35)	177 <i>(</i> 6.97)	20	> 50	-	-	Suction range - 0.8	E
W 1374/4	85 (22.46)	1 1/2"- 16 UN	100 <i>(3.94)</i>	111 <i>(4.37)</i>	140 <i>(</i> 5.5 <i>1)</i>	136 <i>(</i> 5.35)	177 <i>(</i> 6.97)	20	> 50	_	0.2	Suction range - 0.8	E
W 1374/6	85 (22.46)	1 1/2"- 16 UN	100 <i>(3.94)</i>	. ,	140 <i>(</i> 5.51)	· /	177 <i>(</i> 6.97)	15	> 36	-	0.2	Suction range - 0.8	E
W 13 145/1	180 <i>(47.56)</i>	1 1/2"- 16 UN	100 <i>(3.94)</i>	111 <i>(4.37)</i>	140 <i>(</i> 5.51)	136 <i>(</i> 5.35)	302 (11.89)	20	> 50	0.12	2.5	14	E
W 13 145/6	180 <i>(47.56)</i>	M 42x2	100 <i>(</i> .94)	111 <i>(4.37)</i>	140 <i>(</i> 5.51)	136 <i>(5.35)</i>	302 <i>(11.89)</i>	14	36	-	2.5	14	E

· In comparison to the previously used calibration, the new calibration with the same filter results in a lower filter fineness with small particles.

W type, WD type Full-flow oil filters for use with compressors

Oil filters used with compressors have to be free of silicon to enable use of the compressors on paint-spray lines. Furthermore, compressors have different requirements for oil filters in comparison to engines. Firstly, the life of the oil and the oil filter is considerably longer in a compressor than in an engine. Secondly, the compressor oil and oil filter are not exposed to combustion residues and in addition are subjected to a lower temperature level.

MANN- FILTER	Nominal flow rate [l/min]	Dimensic	ons in r	nm <i>(Dii</i>	mensic	ons in ii	nches)	acc. to IS	neness 60 16 889)] * with 99%	Non- return valve	By- pass valve	Permissible operating pressure	Type (see page
	[gpm]	d ₁	d ₂	d ₃	d ₄	d ₅	h	separatior	n efficiency	[bar]	[bar]	[bar]	9)
W 712/65	20 <i>(</i> 5.28)	3/4" - 16 UNF	62 <i>(2.44)</i>	71 <i>(2.80)</i>	80 <i>(3.15)</i>	76 (2.99)	93 <i>(</i> 3.66)	20	> 50	0.12	2.5	14	С
W 719/37	30 (7.93)	3/4" - 16 UNF	62 <i>(2.44)</i>	71 <i>(2.80)</i>	80 <i>(3.15)</i>	76 <i>(2.99)</i>	123 <i>(4.84)</i>	20	> 50	0.12	2.5	14	С
W 920/51	30 (7.93)	3/4" - 16 UNF	62 <i>(</i> 2.44)	71 <i>(</i> 2.80)	96 <i>(3.78)</i>	93 <i>(3.66)</i>	95 <i>(3.74)</i>	20	> 50	0.12	2.5	14	А
W 920/40	35 <i>(</i> 9.25)	3/4" - 16 UNF	62 <i>(2.44)</i>	71 <i>(</i> 2.80)		. ,	95 <i>(</i> 3.74)	14	38	0.12	1.2	14	В
W 930/35	40 <i>(10.57</i>)	3/4" - 16 UNF	62 <i>(2.44)</i>	71 <i>(</i> 2.80)	96 <i>(3.78)</i>		114 <i>(4.49)</i>	20	> 50	0.12	2.5	14	А
W 940/55	55 <i>(14.53)</i>	3/4" - 16 UNF	62 <i>(2.44)</i>	71 <i>(</i> 2.80)	96 <i>(3.78)</i>	93 <i>(3.66)</i>	142 <i>(</i> 5.59)	20	> 50	0.12	2.5	14	А
W 950/24	70 (18.49)	1" - 12 UNF	62 <i>(</i> 2.44)	71 <i>(</i> 2.80)	96 <i>(3.78)</i>	93 <i>(3.66)</i>	170 <i>(</i> 6.69)	14	38	0.12	1.6	14	В
W 962/14	75 (19.82)	1" - 12 UNF	62 <i>(2.44)</i>	71 <i>(</i> 2.80)	96 <i>(3.78)</i>		210 <i>(</i> 8. <i>27</i>)	14	38	_	2.5	14	В
W 962/18	100 <i>(</i> 26 <i>.42</i>)	1" - 12 UNF	62 <i>(2.44)</i>	71 <i>(</i> 2.80)	96 <i>(3.78)</i>	108 <i>(4.25)</i>	210 <i>(</i> 8. <i>27</i>)	5	19	0.12	2.5	14	В
W 1170	70 (18.49)	1" - 12 UNF	93 <i>(3.66)</i>	104 <i>(4.09)</i>	110 <i>(4.33)</i>	. ,	227 (8.94)	14	38	0.12	1.2	14	С
W 11 102	100 <i>(</i> 26. <i>42</i>)	1 1/8" - 16 UN	93 <i>(3.66)</i>	104 <i>(4.09)</i>			260 (10.24)	20	> 50	0.12	2.5	14	С
WD 962/21	65 <i>(17.17</i>)	1" - 12 UNF	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	212 <i>(</i> 8. <i>34</i>)	4	10	-	2.5	25	Е
WD 13 145/8	190 <i>(50.20)</i>	1 1/2" - 16 UN	100 <i>(</i> 3.94)	111 <i>(4.37)</i>	140 <i>(5.51)</i>		302 (11.89)	15	38	-	2.5	20	E
WD 13 145/10	190 <i>(</i> 50.20)	1 1/2" - 16 UN	100 <i>(</i> 3.94)	111 <i>(4.37)</i>	140 <i>(5.51)</i>		302 (11.89)	< 3	7	_	2.5	20	E
WD 13 145/14	210 <i>(</i> 55.48)	1 1/2" - 16 UN	100 <i>(3.94)</i>	111 <i>(4.37)</i>	140 <i>(5.51)</i>	136 <i>(5.35)</i>	302 (11.89)	4	10	-	2.5	20	E

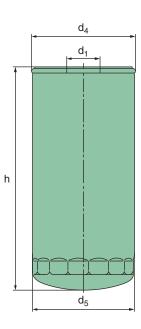

* In comparison to the previously used calibration, the new calibration with the same filter results in a lower filter fineness with small particles.

WD type, WH type

Full-flow oil filters

The WD filters are spin-on filters designed to handle operating pressures between 20 and 35 bar. They are suitable for lube-oil circuits where higher pressure stability is required.

WH spin-on filters have a similar design to the WD type but are designed to handle pressures up to 35 bar. They are mainly used in hydraulic applications.


MANN- FILTER	Nominal flow rate [l/min]	Dimensio	ns in r	nm <i>(Di</i>	mensio	ons in i	inches)	acc. to IS	ineness SO 16 889)] * with 99%	Non- return valve	By- pass valve	Permissible operating pressure	Type (see page
	[gpm]	d ₁	d ₂	d ₃	d ₄	d_5	h	separation	n efficiency	[bar]	[bar]	[bar]	9)
WH 945/1	70 (18.49)	1 3/8" - 12 UNF	-	-	97 <i>(3.28)</i>	94.2 <i>(</i> .71)	152 <i>(</i> 5.98)	7	22	-	-	35	E
WH 945/2	70 (18.49)	1 3/8" - 12 UNF	_ _	_ _	97 <i>(</i> 3.28)	94.2 <i>(</i> 3.71)	152 <i>(</i> 5.98)	4	11	_	_	35	E
WH 980	100 <i>(26.42</i>)	1 3/8" - 12 UNF	-	-	. ,	94.2 <i>(</i> .71)	240 <i>(</i> 9.45)	7	22	-	_	35	E
WH 980/1	100 <i>(26.42</i>)	1 3/8" - 12 UNF	_	_	· /	94.2 <i>(</i> .71)	240 <i>(</i> 9.45)	4	11	-	-	35	Е
WD 724/6	25 (6.61)	3/4" - 16 UNF	. ,	71 <i>(2.80)</i>	. ,	76 <i>(2.99)</i>	138 <i>(5.43)</i>	11	28	-	3.5	35	Е
WD 920	25 (6.61)	3/4" - 16 UNF	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	97 <i>(</i> 3.82)	20	> 50	_	2.5	25	Е
WD 940	50 (13.21)	3/4" - 16 UNF	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	144 <i>(</i> 5.67)	20	50	-	2.5	25	Е
WD 940/2	50 (13.21)	3/4" - 16 UNF	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	144 <i>(</i> 5.67)	14	38	_	3.5	25	Е
WD 950	60 (15.85)	1"- 12 UNF	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	172 <i>(</i> 6. <i>77</i>)	20	> 50	-	2.5	25	Е
WD 950/2	60 (15.85)	1"- 12 UNF	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	172 <i>(</i> 6. <i>77</i>)	15	36	_	2.5	25	E
WD 962	75 (19.82)	1"- 12 UNF			96 <i>(3.78)</i>		212 <i>(</i> 8.35)	20	> 50	_	2.5	25	Е
WD 962/9	75 (19.82)	M 24x1.5	• •	71 <i>(2.80)</i>	• •	93 <i>(</i> .66)	212 <i>(</i> 8.35)	6	22	_	2.5	25	Е
WD 1374	95 (25.10)	1 1/2" - 16 UN	. ,	111 <i>(4.37)</i>		136 <i>(</i> 5.35)	177 <i>(6.97)</i>	20	> 50	-	_	-	Е
WD 13 145	180 <i>(47.56)</i>	1 1/2" - 16 UN	100 <i>(3.94)</i>	111 <i>(4.37)</i>	140 <i>(5.51)</i>	136 <i>(5.35)</i>	302 (11.89)	20	> 50	_	2.5	20	E
WD 13 145/4	180 <i>(47.56)</i>	1 1/2" - 16 UN	100 <i>(3.94)</i>	111 <i>(4.37)</i>	140 <i>(5.51)</i>	136 <i>(5.35)</i>	302 (11.89)	14	38	-	2.5	20	E

* In comparison to the previously used calibration, the new calibration with the same filter results in a lower filter fineness with small particles.

WP type Partial-flow oil filters

The partial-flow filter always works together with a full-flow filter. The types WP 1170 and WP 11 102 are solely partialflow filters. All other WP types are a combination of full-flow and partial-flow filter.

Further types are available on request.

MANN- FILTER	Nominal flow rate [l/min] [gpm]			s in mi <i>in incl</i>		(full flo ISO 1 [µm (c 50%	ineness w) acc. 6 889)] * with 99% .ration	Filter fir (partial fle ISO 1 [µm (c)] 50% separ	ow) acc. 6 889] * with 99%	Non- return valve	By- pass valve	Permissible operating pressure	Type (see page
		d,	d ₄	d ₅	h	effic	iency	efficie	ency	[bar]	[bar]	[bar]	9)
WP 914/80	14 <i>(</i> 3.70)	M 24x1.5	103 <i>(4.06)</i>	102 (4.02)	81 <i>(3.19)</i>	20	> 50	14	38	0.12	1	10	С
WP 928/82	11 <i>(</i> 2.91)	1" - 12 UNF	93 <i>(3.78)</i>	93 <i>(3.78)</i>	120 <i>(4.72)</i>	20	> 50	5	19	0.12	-	14	Е
WP 1144	26 (6.87)	3/4" - 16 UNF	110 <i>(4.33)</i>	108 <i>(4.25)</i>	145 <i>(</i> 5. <i>71)</i>	14	36	< 3	6	0.12	2.5	14	С
WP 1169	45 (11.89)	M 30x2	110 <i>(4.33)</i>	108 <i>(4.25)</i>	213 <i>(</i> 8.39)	14	36	< 3	6	0.12	2.5	14	С
WP 1170	4.5 (1.19)	M 22x1.5	110 <i>(4.33)</i>	108 <i>(4.25)</i>	227 (8.94)	-	-	< 3	15	-	-	14	С
WP 11 102	6.5 <i>(1.72)</i>	1 3/8" - 16 UN	110 <i>(4.33)</i>	108 <i>(4.25)</i>	260 (10.24)	_	_	< 3	15	_	_	14	С

* In comparison to the previously used calibration, the new calibration with the same filter results in a lower filter fineness with small particles.

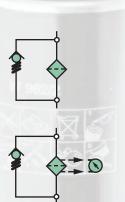
MANN+HUMMEL In-line oil filters

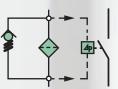
MANN+HUMMEL In-line oil filters

MANN+HUMMEL in-line filters are used mainly in hydraulic systems, for the filtration of engine and gearbox oil, and in lube-oil circuits in general mechanical engineering applications. The range of filters includes filters with single heads, duplex filters without changeover, duplex filters with changeover, and large triplex oil filters. The filtration characteristics depend on the respective spin-on filter and used filter medium.

The advantages at a glance:

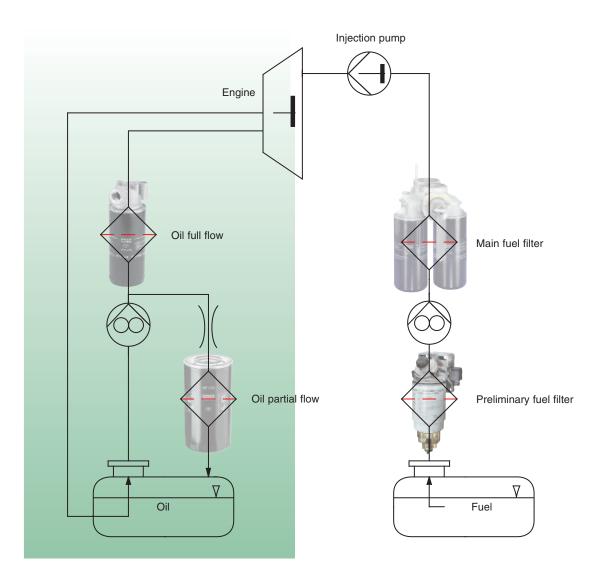
- Easy to fit to existing lines
- Solid and stable cast aluminium construction
- Increased flexibility available for standard version with option of optical or electrical service switch (see pages 89+90)
- Duplex types with changeover available
- Minimal pressure drop
- Proven quality of MANN+HUMMEL spin-on filters


Design


The filters consist of the filter head with connection threads, mounting holes and the MANN+HUMMEL spin-on filter. MANN+HUMMEL service indicators, service switches and bypass valves have to be selected such that when a service is necessary a signal is given before the bypass valve opens. Should you have any questions please get in touch with your MANN+HUMMEL contact partner.

Available versions:

- with bypass valve without service indicator
- with bypass valve and service indicator
- with bypass valve and service switch (make/break contact convertible)


Installation and maintenance

The filter is fitted in the pipeline, whereby the flow direction has to be observed. This is indicated by arrows on the connection threads.

The time for maintenance is usually defined by the engine or equipment manufacturer. Maintenance simply requires replacement of the complete spin-on filter. The respective spin-on filter can easily be removed using a MANN+HUMMEL filter wrench (see page 88).

The in-line filter allows various combinations of the spin-on filter and filter head. This catalogue only lists the basic types. If you do not find an in-line filter suitable for your application, please get in touch with your MANN+HUMMEL contact partners. They will be happy to advise you on the appropriate in-line filter consisting of a filter head, spin-on filter and accessories.

Diagram of filter arrangement around the engine

Overview of oil filter heads

Single head with flange connection

Page 20

Compact filter head with low space requirement and the connections made from above. In spite of its compact form the head has advanced flow characteristics without deflection of the flow.

Single in-line head

This universal filter head is designed for installation in pipelines. The heads already have mounting holes suitable for installation of a MANN+HUMMEL service switch and service indicator (see pages 89+90) available as an optional extra. Page 21+22 Page 24+25 Page 30

Overview of oil filter heads

In-line duplex without changeover

Page 23+26

This head allows the fitting of two filters in parallel to enable a higher volume flow or longer filter service life.

In-line duplex with changeover

This robust filter head suitable for heavy duty applications enables a filter change to be carried out during continuous operation.

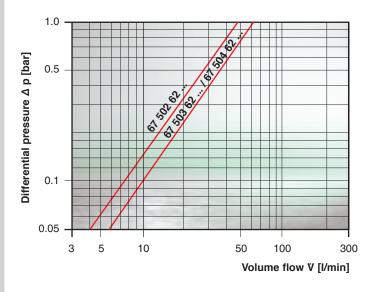
Page 28+29

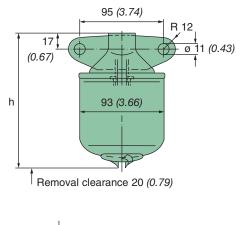
In-line triplex

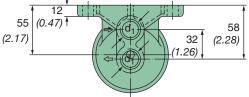
Page 27

This filter head has three filters fitted in parallel to enable a higher volume flow or a longer filter service life.

In-line oil filters with single head


Operating pressure 14 bar, up to 40 l/min – Flange connection


This light and robust filter head is mounted with two screws to a flat surface. The filter inlet and outlet are from above.

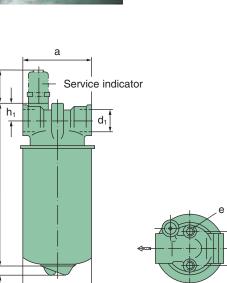


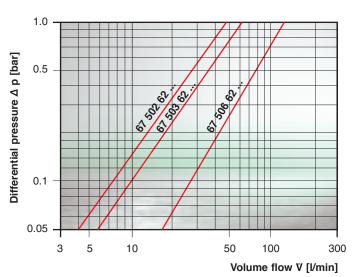
Characteristics

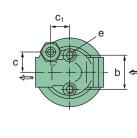
Flow resistance acc. to ISO 3968 with 36 mm²/s.

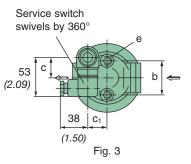
Part no.	Nominal flow rate [l/min] [gpm]	MANN- FILTER (see page 10)		ns in mm s <i>in inches)</i> h	Weight approx. [kg]
67 502 62 026	25 (6.61)	W 920	M 20x1.5	145 <i>(</i> 5. <i>71)</i>	0.7
67 503 62 026	40 (10.6)	W 940	M 20x1.5	192 (7.56)	0.8
67 502 62 106	25 (6.61)	W 920	G 1/2"	145 <i>(</i> 5. <i>71)</i>	0.7
67 504 62 126	40 (10.6)	W 940	G 1/2"	192 (7.56)	0.8

In-line oil filters with single head Operating pressure: 14 bar, up to 70 l/min (in-line)


 h_2


h


7 (0.28) This design has the inlet and the outlet on the side (in-line).


Characteristics

Flow resistance acc. to ISO 3968 with 36 mm²/s.

Removal clearance 30 (1.18)

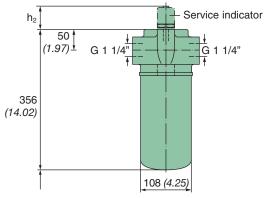
93 (3.66)

Fig. 1

Fig. 2

Part no.	Fig.	MANN- FILTER		Di	mensio	ons in m	ım <i>(Dim</i> e	ensions	in inche	es)		Service indica-	Weight approx.
		(see pages 10+11)	а	b	С	C ₁	d ₁ 1)	е	h	h ₁	h ₂	tion	[kg]
Nominal flow ra	ate up	to 25 l/min (6.6 gpm)										
67 502 62 256	1	W 920	90 <i>(3.54)</i>	40 <i>(1.57</i>)	-	-	G 1/2"	M 8	147 <i>(</i> 5.79)	22 (0.87)	-	-	1.2
67 502 62 236	2	W 920	90 <i>(3.54)</i>	40 <i>(1.57</i>)	21.5 <i>(0.83)</i>	24 <i>(</i> 0.94)	G 1/2"	M 8	147 <i>(</i> 5. <i>7</i> 9)	22 (0.87)	46 (1.81)	optical	1.2
67 502 62 226	3	W 920	90 <i>(3.54)</i>	40 <i>(1.57</i>)	21.5 <i>(0.83)</i>	24 <i>(</i> 0.94)	G 1/2"	M 8	147 <i>(</i> 5.79)	22 (0.87)	62 <i>(2.44)</i>	electrical	1.3
Nominal flow ra	ate up	to 40 l/min (13.2 gpi	m)										
67 503 62 306	1	W 940	90 <i>(</i> .54)	40 <i>(1.57)</i>	-	-	G 1/2"	M 8	194 <i>(7.64)</i>	22 (0.87)	-	-	1.2
67 503 62 276	2	W 940	90 <i>(</i> .54)	40 <i>(1.57</i>)	21.5 <i>(0.83)</i>	24 <i>(</i> 0.94)	G 1/2"	M 8	194 <i>(7.64)</i>	22 (0.87)	46 (1.81)	optical	1.2
67 503 62 266	3	W 940	90 <i>(3.54)</i>	40 <i>(1.57</i>)	21.5 <i>(0.83)</i>	24 <i>(</i> 0.94)	G 1/2"	M 8	194 <i>(7.64)</i>	22 (0.87)	62 <i>(</i> 2.44)	electrical	1.3
Nominal flow ra	ate up	to 70 l/min (18.5 gpi	m)										
67 506 62 706	1	W 962/2	95 <i>(3.74)</i>	47.5 <i>(1.87</i>)	-	-	G 1"	M 10	269 <i>(10.59)</i>	25 <i>(</i> 0.98)	_	-	1.6
67 506 62 666	2	W 962/2	95 <i>(3.74)</i>	47.5 (1.87)	28.5 <i>(1.12</i>)	26 (1.02)	G 1"	M 10	269 <i>(10.59)</i>	25 <i>(</i> 0.98)	46 (1.81)	optical	1.6
67 506 62 676	3	W 962/2	95 <i>(</i> 3.74)	47.5 <i>(1.87</i>)	28.5 <i>(1.12</i>)	26 <i>(1.02)</i>	G 1"	M 10	269 <i>(10.59)</i>	25 <i>(</i> 0.98)	62 <i>(2.44)</i>	electrical	1.7

1) Further threads available on request.


In-line oil filters with single head **Operating pressure: 14 bar, up to 100 l/min (in-line)**

Characteristics

Flow resistance acc. to ISO 3968 with 36 mm²/s.

Removal clearance 30 (1.18)

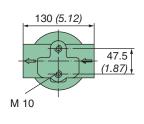
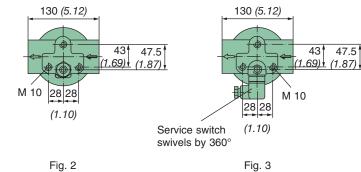
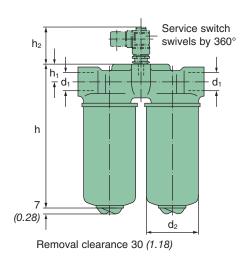
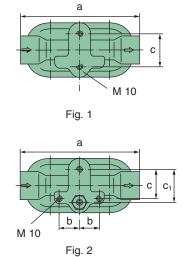



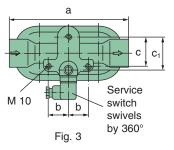
Fig. 1

47.5

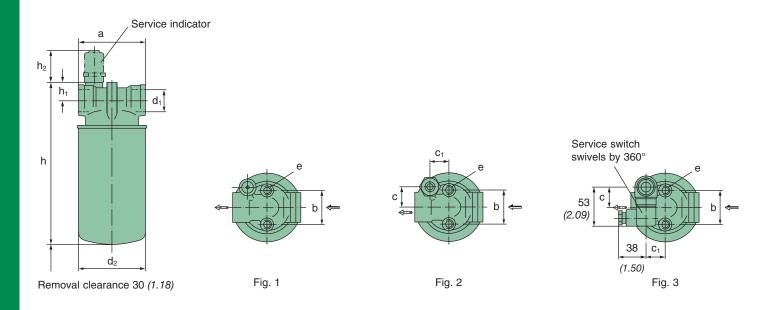

Part no. Fig. Nominal flow rate MANN-Dimensions in mm Service Weight FILTER indication approx. [l/min] (Dimensions in inches) (see page 11) [gpm] h_2 [kg] 100 67 612 62 146 1 W 11 102 2.4 _ _ (26.42) 100 46 67 612 62 176 2 W 11 102 2.5 optical (26.42)(1.81)100 62 67 612 62 166 3 W 11 102 electrical 2.5 (26.42) (2.44)


In-line duplex oil filters without changeover Operating pressure: 14 bar, up to 180 l/min (in-line)



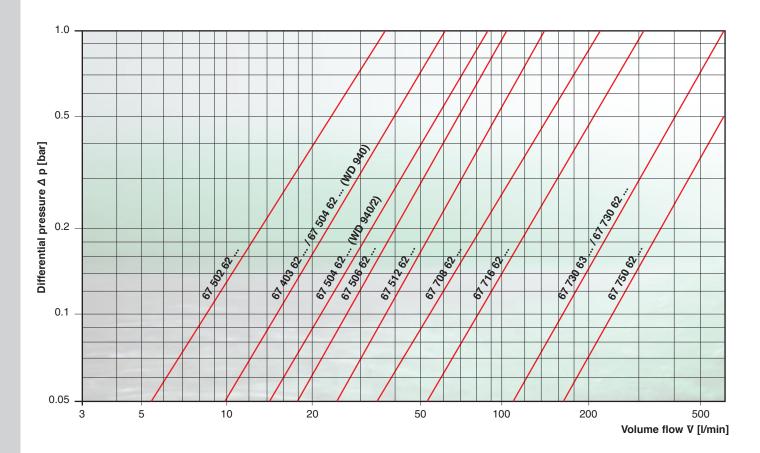

Characteristics

Flow resistance acc. to ISO 3968 with 36 mm²/s.


Part no.	Fig.	MANN- FILTER		D	imensio	ons in n	nm <i>(Dimer</i>	isions i	n inches	5)		Service indi-	Weight approx.
		(see page 11)	а	b	С	C ₁	d ₁ ²⁾	d ₂	h	h ₁	h ₂	cation	[kg]
Nominal flow rate	e up t	o 120 l/min <i>(31.7</i>	gpm)										
67 512 62 106	1	2x W 962/2	200 (7.87)	-	47.5 <i>(1.87</i>)	-	G 1"	93 <i>(3.66)</i>	275 (10.83)	30 <i>(1.18)</i>	-	-	2.5
67 512 62 136	2	2x W 962/2	200 (7.87)	40 (1.57)	43 <i>(1.69)</i>	47.5 <i>(1.87</i>)	G 1"	93 <i>(3.66)</i>	275 (10.83)	30 (1.18)	46 (1.81)	optical	2.6
67 512 62 126	3	2x W 962/2	200 (7.87)	40 <i>(1.57</i>)	43 <i>(1.69)</i>	47.5 <i>(1.87</i>)	G 1"	93 <i>(3.66)</i>	275 (10.83)	30 <i>(1.18)</i>	62 <i>(2.44)</i>	electrical	2.6
Nominal flow rate	e up t	o 180 l/min <i>(47.6</i>	gpm)										
67 625 62 106 ¹⁾	1	2x W 11 102	270 (10.63)	-	70 <i>(2.76)</i>	-	G 1 1/2"	108 <i>(4.25)</i>	337 (13.27)	35 <i>(1.38)</i>	-	-	4.6
67 625 62 116 ¹⁾	2	2x W 11 102	270 (10.63)	45 (1.77)	65 <i>(2.56)</i>	70 <i>(2.76)</i>	G 1 1/2"	108 <i>(4.25)</i>	337 (13.27)	35 (1.38)	46 (1.81)	optical	4.7
67 625 62 126 ¹⁾	3	2x W 11 102	270 (10.63)	45 (1.77)	65 <i>(2.56)</i>	70 <i>(2.76)</i>	G 1 1/2"	108 <i>(4.25)</i>	337 (13.27)	35 <i>(1.38)</i>	62 <i>(2.44)</i>	electrical	4.7

1) The filters are supplied without a special wrench profile.

2) Further threads are available on request.


In-line oil filters with single head

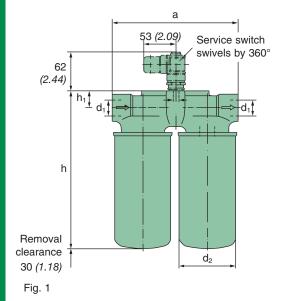
Operating pressure: 20/25/35 bar, up to 180 l/min (in-line)

Characteristics

Flow resistance acc. to ISO 3968 with 36 mm²/s.

In-line oil filters with single head

Operating pressure: 20/25/35 bar, up to 180 l/min (in-line)


Part no.	Fig.	Nominal flow rate	MANN- FILTER		E	Dimens	ions in	ı mm <i>(Di</i>	mensio	ons ir	n inche:	s)		Service indi-	Weight approx.
		[l/min] ³⁾ <i>[gpm]</i>	(see page 13)	а	b	С	C ₁	d ₁ 1)	d ₂	е	h	h ₁	h ₂	cation	[kg]
Operating pres	sure		MPa)												
67 403 62 246	1	20 <i>(</i> 5.28)	WD 724/6	90 <i>(3.54)</i>	40 (1.57)	-	-	G 1/2"	76 <i>(2.99)</i>		192 <i>(7.56)</i>	22 (0.87)	-	-	0.9
Operating pres	sure		MPa)												
67 502 62 246	1	25 (6.60)	WD 920	90 <i>(</i> 3.54)	. ,	-	-	G 1/2"	93 <i>(3.66)</i>		149 <i>(</i> 5.87)	22 (0.87)	-	-	0.8
67 502 62 216	2	25 (6.60)	WD 920	90 <i>(3.54)</i>	. ,	21.5 <i>(0.85)</i>	24 (0.94)	G 1/2"	93 <i>(3.66)</i>	80	149 <i>(</i> 5.87)		46 (1.81)	optical	0.8
67 502 62 206	3	25 <i>(</i> 6.60)	WD 920	90 <i>(</i> .54)	40 (1.57)	21.5 <i>(0.85)</i>	24 (0.94)	G 1/2"	93 <i>(3.66)</i>	Σ	149 <i>(</i> 5.87)		62 <i>(2.44)</i>	electrical	0.8
67 504 62 436	1	40 <i>(10.57</i>)	WD 940	90 <i>(3.54)</i>	. ,	-	-	G 1/2"	93 <i>(3.66)</i>		196 <i>(7.72)</i>	22 (0.87)	-	-	1.3
67 504 62 456	2	40 <i>(10.57</i>)	WD 940	90 <i>(3.54)</i>	40 (1.57)	21.5 <i>(0.85)</i>	24 (0.94)	G 1/2"	93 <i>(3.66)</i>		196 <i>(7.72)</i>	22 (0.87)	46 (1.81)	optical	1.4
67 504 62 446	3	40 <i>(10.57</i>)	WD 940	90 <i>(</i> .54)	. ,	21.5 <i>(0.85)</i>	24 (0.94)	G 1/2"	93 <i>(3.66)</i>		196 <i>(7.72)</i>	· /	62 (2.44)	electrical	1.4
67 504 62 426	1	40 <i>(10.57)</i>	WD 940/2	95 <i>(3.74)</i>	47.5 (1.87)	-	-	G 1"	93 <i>(3.66)</i>		203 <i>(7.99)</i>	25 <i>(0.98)</i>	-	-	0.9
67 504 62 416	2	40 <i>(10.57</i>)	WD 940/2	95 <i>(</i> .74)	. ,	28.5 <i>(1.12)</i>	26 (1.02)	G 1"	93 <i>(3.66)</i>		203 <i>(7.99)</i>		46 (1.81)	optical	1.0
67 504 62 406	3	40 <i>(10.57)</i>	WD 940/2	95 <i>(3.74)</i>	47.5 (1.87)	28.5 <i>(1.12)</i>	26 (1.02)	G 1"	93 <i>(3.66)</i>		203 <i>(7.99)</i>	25 <i>(0.98)</i>	62 <i>(2.44)</i>	electrical	1.0
67 506 62 756	1	70 (18.49)	WD 962	95 <i>(</i> .74)	47.5 (1.87)	-	-	G 3/4"	93 <i>(3.66)</i>		271 <i>(10.67)</i>	25 (0.98)	-	_	2.7
67 506 62 696	1	70 (18.49)	WD 962	95 <i>(</i> .74)	47.5 (1.87)	-	_	G 1"	93 <i>(3.66)</i>		271 <i>(10.67)</i>	25 <i>(0.98)</i>	_	-	2.7
67 506 62 656	2	70 (18.49)	WD 962	. ,	47.5 (1.87)	28.5 (1.12)	26 (1.02)	G 1"	93 <i>(3.66)</i>		271 (10.67)	25 <i>(0.98)</i>	46 (1.81)	optical	2.8
67 506 62 646	3	70 (18.49)	WD 962	95 <i>(</i> .74)	47.5 (1.87)	28.5 (1.12)	26 (1.02)	G 1"	93 <i>(3.66)</i>	M 10	271 <i>(10.67)</i>	25 <i>(0.98)</i>	62 <i>(</i> 2.44)	electrical	2.8
Operating pres	sure) MPa)	105	50			0	100	~	0.40				
67 708 62 146 ²⁾	1	95 (25.09)	WD 1374	135 <i>(</i> 5. <i>32)</i>			-		136 <i>(5.35)</i>			28 (1.10)		-	3.0
67 708 62 156 ²⁾	2	95 (25.09)	WD 1374				26 (1.02)		136 <i>(5.35)</i>			28 (1.10)		optical	3.1
67 708 62 166 ²⁾	3	95 <i>(</i> 25.09)	WD 1374			30 (1.18)	26 (1.02)		136 <i>(5.35)</i>			28 (1.10)	62 <i>(2.44)</i>	electrical	3.1
67 716 62 216	1	180 <i>(47.55)</i>	WD 13 145	135 <i>(5.32)</i>		-	-	G 1 1/4"	136 <i>(5.35)</i>		371 <i>(14.61)</i>		-	-	3.4
67 716 62 226	2	180 <i>(47.55)</i>	WD 13 145		56 <i>(2.20)</i>	30 (1.18)	26 (1.02)	G 1 1/4"	136 <i>(5.35)</i>		371 <i>(14.61)</i>	28 (1.10)		optical	3.5
67 716 62 236	3	180 <i>(47.55)</i>	WD 13 145	135 <i>(</i> 5. <i>32)</i>	56 <i>(2.20)</i>	30 <i>(1.18)</i>	26 (1.02)	G 1 1/4"	136 <i>(5.35)</i>		371 <i>(14.61)</i>	28 (1.10)	62 <i>(</i> 2.44)	electrical	3.5

1) Further threads available on request.

2) Without bypass valve.

3) Flow rates are valid for liquids with 36 mm²/s and flow resistance according to the diagram on page 24.

In-line duplex oil filters without changeover Operating pressure: 20/25 bar, up to 360 l/min (in-line)

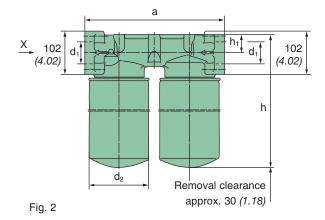
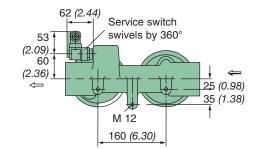
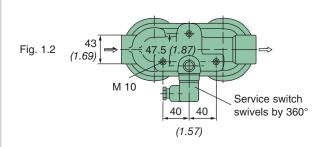
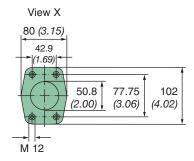





Fig. 1.1 \Rightarrow fig. 1.1 fig. 1.1 fig. 1.1 fig. 1.1

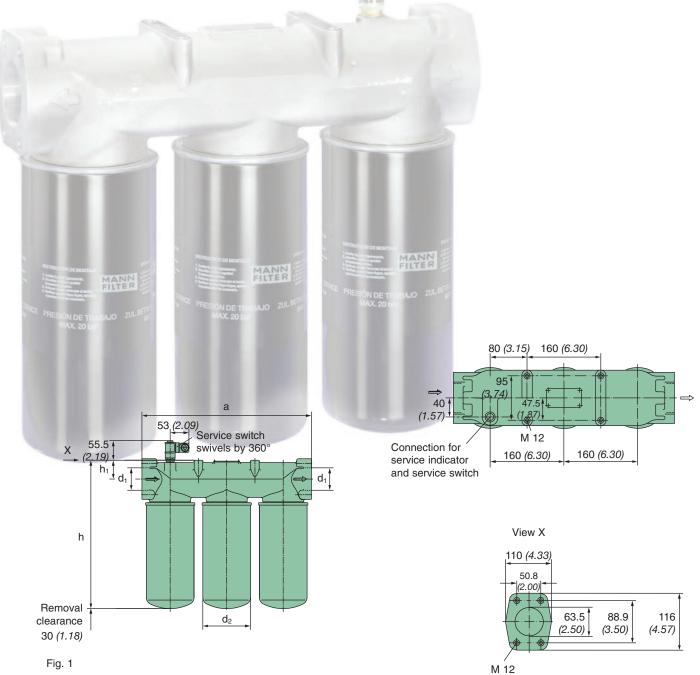
Part no.	Fig.	MANN- FILTER (see page 13)	а	Dimer <i>(Dimens</i> d ₁ 1)	nsions i <i>ions in</i> d ₂		h ₁	-	nissible g pressure [MPa]	Service indication	Weight approx. [kg]
Nominal flow rat	e up t	o 120 l/min <i>(31.7</i>	gpm) ²⁾								
67 512 62 156	1.1	2 x WD 962	200 (7.87)	G 1"	93 <i>(3.66)</i>	277 (10.91)	30 <i>(1.18)</i>	25	2.5	-	3.0
67 512 62 166	1.2	2 x WD 962	200 (7.87)	G 1"	93 <i>(3.66)</i>	277 (10.91)	30 <i>(1.18)</i>	25	2.5	optical	3.2
67 512 62 176	1.2	2 x WD 962	200 (7.87)	G 1"	93 <i>(3.66)</i>	277 (10.91)	30 <i>(1.18)</i>	25	2.5	electrical	3.2
Nominal flow rat	e up t	o 360 l/min (95.1	gpm) ²⁾								
67 730 62 296	2	2 x WD 13 145	320 (12.60)	G 2"	136 <i>(5.35)</i>	402 <i>(15.83)</i>	42 (1.65)	20	2	-	6.8
67 730 62 266	2	2 x WD 13 145	320 (12.60)	G 2"	136 <i>(5.35)</i>	402 (15.83)	42 (1.65)	20	2	optical	6.9
67 730 62 256	2	2 x WD 13 145	320 (12.60)	G 2"	136 <i>(5.35)</i>	402 (15.83)	42 (1.65)	20	2	electrical	6.9

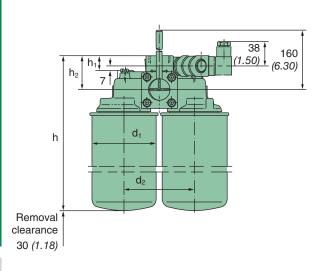
1) Further threads available on request.

2) Flow rates are valid for liquids with 36 mm²/s and flow resistance according to the diagram on page 24.

In-line triplex oil filters

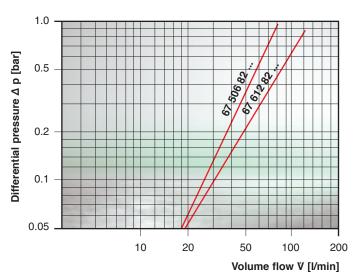
Operating pressure: 20 bar, up to 540 l/min (in-line)

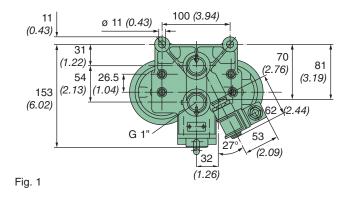


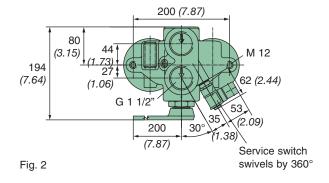

Fig. 1

Part no.	Fig.	MANN- FILTER (see page 13)	Dimensions in mm <i>(Dimensions in inches)</i> a d ₁ d ₂ h h ₁						issible pressure [MPa]	Service indication	Weight approx. [kg]
Nominal flow rate up to 540 l/min (142.7 gpm) ¹⁾					2						
67 750 62 106	1	3 x WD 13 145	480 (18.90)	SAE	136 <i>(5.35)</i>	424.5 (16.71)	53.5 (2.11)	20	2	-	10.1
67 750 62 116	1	3 x WD 13 145	480 (18.90)	SAE	136 <i>(5.35)</i>	424.5 (16.71)	53.5 (2.11)	20	2	optical	10.2
67 750 62 126	1	3 x WD 13 145	480 (18.90)	SAE	136 <i>(5.35)</i>	424.5 (16.71)	53.5 (2.11)	20	2	electrical	10.2

1) Flow rates are valid for liquids with 36 mm²/s and flow resistance according to the diagram on page 24.


In-line duplex oil filters with changeover Operating pressure: 10/25 bar, up to 100 l/min


The changeover function enables filter maintenance without a break in operation.



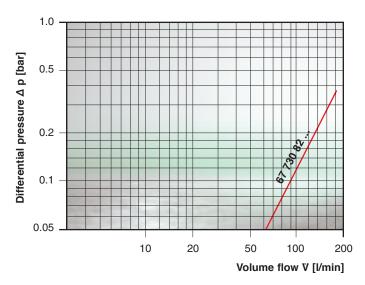
Characteristics

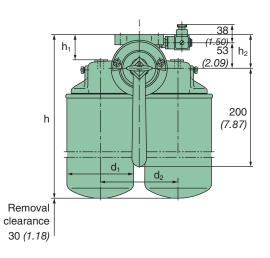
Flow resistance acc. to ISO 3968 with 36 mm²/s.

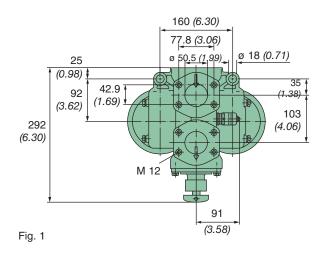
Part no.	Fig.	MANN- FILTER (see pages 12+13)						issible pressure [MPa]	Service indication	Weight approx. [kg]	
Nominal flow rate		80 l/min <i>(21.14 gpm)</i>	· ·	2		1	2				1 03
Nominal now rate	up 10	 	93	102	294	22	50				
67 506 82 176 ³⁾	1	2 x WD 962	(3.66)	(4.02)	(11.57)	(0.87)	(1.97)	25	2.5	-	4.1
			93	102	294	22	50	25	2.5		
67 506 82 166	1	2 x WD 962	(3.66)	(4.02)	(11.57)	(0.87)	(1.97)			optical	4.2
07 500 00 400		0 WD 000	93	102	294	22	50	05	0.5		4.0
67 506 82 136	1	2 x WD 962	(3.66)	(4.02)	(11.57)	(0.87)	(1.97)	25	2.5	electrical	4.2
Nominal flow rate	up to	, 100 l/min <i>(31.7 gpm)</i>	2)								
07 010 00 110		2 x W 11 102 ¹⁾	108	130	373	53	71	10			7.0
67 612 82 116	116 2 2 x W 1	2 X W 11 102 "	(4.25)	(5.12)	(14.69)	(2.09)	(2.80)	10	I	_	7.2
67 610 00 146	0	2 x W 11 102 ¹⁾	108	130	373	53	71	10	4	alactrical	7.0
67 612 82 146	2	2 X W 11 102 "	(4.25)	(5.12)	(14.69)	(2.09)	(2.80)	10	1	electrical	7.3

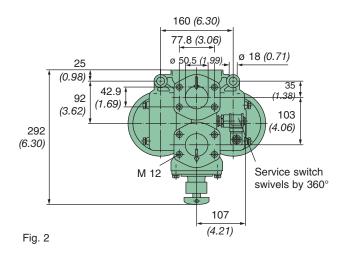
1) With non-return valve.

2) Flow rates are valid for liquids with 36 mm²/s (cSt) and a flow resistance of 0.4 up to 0.6 bar (40 up to 60 kPa).


The nominal flow rate per filter half is indicated.


3) Changeover lever spanner size 24, order no. 02 086 01 024.


In-line duplex oil filters with changeover Operating pressure: 20 bar, up to 180 l/min

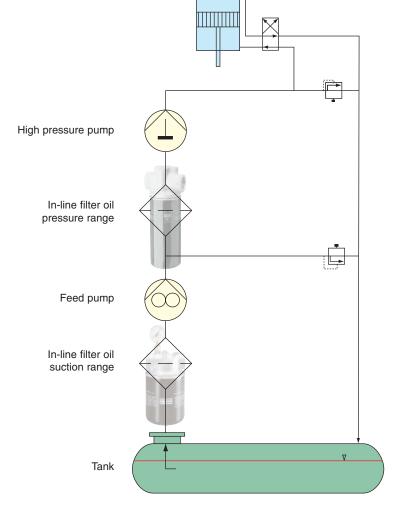

Characteristics

Flow resistance acc. to ISO 3968 with 36 mm²/s.

Part no.	Fig.	MANN- FILTER (see page 13)	$\begin{array}{c c} Dimensions in mm \\ \textit{(Dimensions in inches)} \\ d_1 & d_2 & h & h_1 & h_2 \end{array}$					-	issible pressure [MPa]	Service indication	Weight approx. [kg]
Nominal flow rate	e bis 1	80 l/min (47.6 gpm)) 2)								
67 730 82 106 ¹⁾	1	2 x WD 13 145	136 <i>(</i> 5.35)	160 <i>(6.30</i>)	424 (16.69)	52 (2.05)	70 (2.76)	20	2	-	9.7
67 730 82 126 ¹⁾	1	2 x WD 13 145	136 <i>(</i> 5.35)	160	424 (16.69)	52 (2.05)	70 (2.76)	20	2	optical	9.8
67 730 82 116 ¹⁾	2	2 x WD 13 145	136 <i>(5.35)</i>	160 <i>(6.30)</i>	424 (16.69)	52 <i>(2.05)</i>	70 <i>(2.76)</i>	20	2	electrical	9.8

1) On request available with 1 counter flange (with screws and spring washer), order no. 22 078 21 101.

2) Flow rates are valid for liquids with 36 mm²/s (cSt) with a flow resistance of 0.4 up to 0.6 bar (40 up to 60 kPa). The nominal flow rate per filter half is indicated.


In-line oil filters with single head (suction range) Operating pressure: 0.8 bar, up to 85 l/min (in-line)

Suction filters are primarily used in hydraulic systems on the suction side of the feed pump. Typical application areas include agricultural machines with their comprehensive mobile hydraulics. Suction filters are designed to achieve a low pressure drop. Filter monitoring is made via the optionally available MANN+HUMMEL low pressure switch or through differential pressure monitoring.

Notes for installation:

- No cross-section constriction of the suction line to the connection on the filter head
- No additional pressure drop such as with fittings and redirected lines

MANN+HUMMEL Oil filter elements

MANN+HUMMEL Oil filter elements

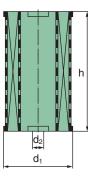
MANN+HUMMEL filter elements are fine filters for lube oils, hydraulic oils and cooling liquids. The elements are characterised by a high surface area relative to volume. This enables a high dirt holding capacity.

The advantages at a glance:

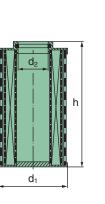
- Consistently high separation efficiency
- High dirt holding capacity of filter elements through high filter surface area
- Pleat structuring allows the complete filter surface area to be effective for the whole of the operating time
- Special impregnation provides resistance to water, coolants and oils up to a temperature of 140 °C
- A variety of versions are available acc. to DIN or ISO standards
- Excellent economy with high utilisation of the machine through re-use of the filter housing on the machine side.

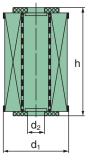
Design

The filter element consists of two end caps with the filter medium fitted in the middle. Depending on the type of element, end caps are available in metal or metal-free versions. The end caps are fitted with seals which ensure reliable sealing between the raw and the clean side. Depending on the application, filter elements are available with element protection through an integrated handle. The flow of liquid through the element takes place from the outside to the inside.

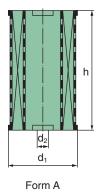

Maintenance

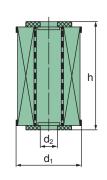
The time when maintenance is required is usually defined by the engine or machine producer. Maintenance simply requires replacement of the used element.



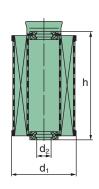

H type Oil full flow

H types are star-pleated filter elements for housings only for use in the full flow of the liquid.

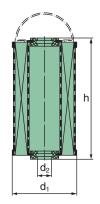

Form B


Form E

MANN- FILTER	Nominal flow rate [I/min] [gpm]		ensions in <i>nsions in ir</i> d ₂		Filter fineness ac [µm (c) 50% separation	Туре	
H 31/1	0.5 (0.1)	30.5 <i>(1.20)</i>	8 (0.32)	26 (1.02)	7	28	E
H 31/2	0.5 (0.1)	26 (1.02)	8 (0.32)	19 <i>(0.75)</i>	20	> 50	А
H 42	1.5 <i>(</i> 0. <i>4</i>)	27.5 (1.08)	10 <i>(0.39)</i>	51 <i>(2.01)</i>	20	> 50	A
H 53	5 (1.3)	40 (1.57)	12.8 <i>(</i> 0.50)	64 <i>(2.52)</i>	20	> 50	А
H 53/3	5 (1.3)	40 (1.57)	12.8 <i>(0.50)</i>	64 <i>(2.52)</i>	20	> 50	А
H 68/1	10 (2.6)	59 <i>(2.32)</i>	32 (1.26)	103 <i>(4.06)</i>	20	> 50	E
H 601	17 <i>(4.5)</i>	59 <i>(2.32)</i>	18 <i>(</i> 0.71)	101 <i>(</i> 3.98)	20	> 50	А
H 601/4	17 (4.5)	60 <i>(2.36)</i>	18 <i>(</i> 0.71)	101 <i>(</i> 3.98)	20	> 50	А
H 614/3	18 <i>(4.8)</i>	59 <i>(2.32)</i>	28.3 (1.11)	200 (7.87)	15	36	E
H 616/1	20 (5.3)	59 <i>(2.32)</i>	32 (1.26)	189 <i>(7.44)</i>	20	> 50	E
H 617 N	21 <i>(</i> 5 <i>.</i> 5 <i>)</i>	59 <i>(2.32)</i>	28.2 (1.11)	101 <i>(</i> 3.98)	20	> 50	А
H 715/1 X	18 <i>(4.8)</i>	68 <i>(2.68)</i>	20 <i>(</i> 0.79)	109 <i>(4.29)</i>	20	> 50	В

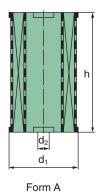

* In comparison to the previously used calibration, the new calibration with the same filter results in a lower filter fineness with small particles. Other types are available on request.

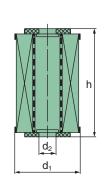
H type Oil full flow



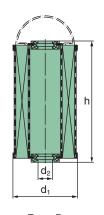
Form B

Form C

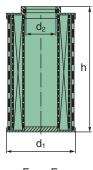



Form D acc. to DIN 73 358

MANN- FILTER	Nominal flow rate [I/min] [gpm]		ensions in <i>nsions in ii</i> d ₂		Filter fineness ac [µm (c) 50% separation	Туре	
H 724/1	30 (7.9)	63 (2.48)	28.3 (1.11)	248 (9.76)	< 3	7	D
H 822/1 X	30 (7.9)	73 (2.87)	26 (1.02)	148 <i>(</i> 5.83)	20	> 50	В
H 829	38 (10.0)	72 (2.83)	26 (1.02)	165 <i>(</i> 6.50)	20	> 50	А
H 925/2	32 (8.5)	81 <i>(</i> 3. <i>19</i>)	13 <i>(</i> 0.51)	112 <i>(4.41)</i>	7	28	С
H 932/2	40 (10.6)	84 <i>(</i> 3.31)	24.2 (0.95)	134 <i>(</i> 5.28)	15	36	А
H 1081	80 (21.1)	100 <i>(</i> 3.94)	40 (1.57)	234 (9.21)	20	> 50	А
H 1273	95 (25.1)	118 <i>(4.65)</i>	59 (2.32)	163 <i>(</i> 6. <i>42</i>)	20	> 50	В
H 1275 X	145 (38.3)	120 <i>(4.72)</i>	56 (2.20)	171 <i>(</i> 6. <i>7</i> 3)	14	38	В
H 1282 X	160 (42.3)	117 (4.61)	56 (2.20)	196 (7.72)	14	38	А
H 1290/1	100 (26.4)	118 (4.65)	59 (2.32)	165 <i>(</i> 6.50)	20	> 50	В
H 11 171	85 (22.5)	110 (4.33)	48 (1.89)	452 (17.80)	15	36	В
H 12 107/1	160 (42.3)	117 <i>(4.61)</i>	56 <i>(2.20)</i>	196 <i>(7.72)</i>	14	38	А


* In comparison to the previously used calibration, the new calibration with the same filter results in a lower filter fineness with small particles. Other types are available on request.

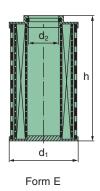
H type Oil full flow



Form B

Form D acc. to DIN 73 358

Form E


MANN- FILTER	Nominal flow rate [l/min] [gpm]		ensions in <i>nsions in ir</i> d ₂		Filter fineness ac [µm (c)] 50% separation	Туре	
					3694141011	eniciency	
H 12 113	110 (29.1)	117 <i>(4.61)</i>	43 (1.69)	229 <i>(</i> 9.02)	20	> 50	А
H 12 110/2 X	145 <i>(</i> 38 <i>.</i> 3)	120 <i>(4.72)</i>	56 (2.20)	249 <i>(</i> 9.80)	14	38	В
H 12 225	121 <i>(32.0)</i>	117 <i>(4.61)</i>	56.5 <i>(</i> 2.22)	462 (18.19)	24	50	В
H 13 104	50 (13.2)	126 <i>(4.96)</i>	40 (1.69)	290 (11.42)	20	> 50	А
H 15 111/2	200 (52.8)	150 <i>(</i> 5.91)	88 (3.46)	165 <i>(6.50)</i>	24	50	А
H 15 206/1	200 (52.8)	150 <i>(</i> 5.91)	31 <i>(1.22</i>)	375 <i>(14.76</i>)	20	> 50	E
H 15 222/2	270 (71.3)	150 <i>(</i> 5.91)	88 (3.46)	330 <i>(12.99)</i>	24	50	А
H 15 230/1	230 (60.8)	150 <i>(</i> 5.91)	31 <i>(1.22)</i>	375 (14.76)	15	36	E
H 15 250/1	250 (66.1)	150 <i>(</i> 5.91)	31 <i>(1.22)</i>	375 (14.76)	7	28	E
H 20 211	390 (103.0)	194 <i>(7.64)</i>	118 <i>(4.65)</i>	183 <i>(7.20)</i>	24	50	В
H 20 440	495 (130.8)	194 <i>(7.64)</i>	118 <i>(4.65)</i>	366 (14.41)	24	50	В
H 25 669/1	850 (224.6)	242 <i>(</i> 5.93)	132 <i>(</i> 5. <i>20)</i>	366 (14.41)	11	28	А
H 28 545	675 (178.3)	274 (10.79)	195 <i>(7.68)</i>	304 <i>(11.97</i>)	24	50	В

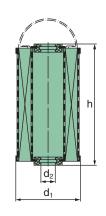
* In comparison to the previously used calibration, the new calibration with the same filter results in a lower filter fineness with small particles. Other types are available on request.

HD type Oil full flow – For higher pressures

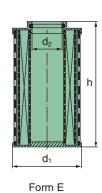

HD types are oil filter elements designed for higher pressures and especially suitable for hydraulic applications.

MANN- FILTER	Nominal flow rate [l/min]	Dimensions in mm (Dimensions in inches)			β _x ≥ 200	Differential pressure sta- bility of the filter element	Туре
	[gpm]	d ₁	d_2	h	х	[bar]	
HD 45	30 (7.93)	35 (1.38)	12.2 <i>(0.48)</i>	94 <i>(3.70)</i>	15	30	E
HD 46	25 (6. <i>6</i>)	40 <i>(1.57</i>)	18 <i>(0.71)</i>	122 <i>(4.80)</i>	23	10	E
HD 46/1	20 (5.3)	40 (1.57)	18 <i>(0.71)</i>	122 <i>(4.80)</i>	5	60	E
HD 46/2	25 (6.6)	40 (1.57)	18 <i>(0.71)</i>	122 <i>(4.80)</i>	8	10	E
HD 46/3	25 (6.6)	40 (1.57)	18 <i>(0.71)</i>	122 <i>(4.80)</i>	8	60	E
HD 56	60 <i>(15.85)</i>	47 (1.85)	22.2 (0.87)	84 <i>(</i> 3.31)	8	30	E
HD 57/3	50 (13.21)	47 (1.85)	25.5 (1.00)	94 <i>(3.70)</i>	5	210	А
HD 57/2	50 <i>(13.21)</i>	47 (1.85)	25.5 <i>(1.00)</i>	94 <i>(3.70)</i>	17.5	20	А
HD 58	40 (10.57)	45 (1.77)	25.8 <i>(1.02)</i>	112.5 <i>(4.43)</i>	8	160	E
HD 65	60 <i>(15.85)</i>	57 (2.24)	25 (0.98)	71 <i>(</i> 2.80)	23	45	E
HD 65/1	35 <i>(</i> 9.24)	57 (2.24)	25 (0.98)	71 <i>(</i> 2.80)	5	180	E
HD 65/2	45 (11.88)	57 (2.24)	25 (0.98)	71 <i>(2.80)</i>	8	15	E
HD 68	40 (10.57)	55.5 <i>(2.19)</i>	28.7 (1.13)	136 <i>(5.35)</i>	10	30	E

HD type Oil full flow – For higher pressures

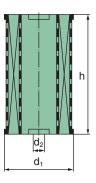


(63.41)


(2.91)

(0.79)

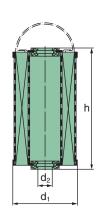
(7.99)



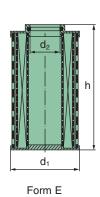
Form D acc. to DIN 73 358

MANN-Nominal flow rate Dimensions in mm $\beta_x \ge 200$ Differential pressure sta-Туре FILTER bility of the filter element (Dimensions in inches) [l/min] [gpm] d, d_2 h х [bar] 90 55 25.5 101 HD 69 10 15 Е (23.78) (2.17) (1.00) (3.98) 25.5 172 80 47 HD 513 10 20 А (21.14) (1.85) (1.00)(6.77) 47 25.5 172 80 HD 513/3 5 210 А (21.14)(1.85) (1.00) (6.77) 110 47 25.5 249 HD 518 10 20 А (1.85) (1.00) (9.80) (29.06) 25 124 57 100 HD 610 23 45 Е (4.88) (2.24) (0.98) (26.42) 50 57 25 124 HD 610/1 5 180 Е (13.21) (2.24) (0.98) (4.88) 25 124 57 70 HD 610/2 8 15 Е (2.24) (4.88) (18.49) (0.98) 57 25 171 125 HD 613 Е 23 45 (2.24) (0.98) (6.73) (33) 57 25 171 60 HD 613/1 Е 5 180 (15.85) (2.24) (0.98) (6.73) 57 25 171 85 HD 613/2 8 Е 15 (0.98) (2.24) (6.73) (22.45) 75 56.5 25.7 170 HD 620 5 30 Е (19.82) (2.22) (1.01) (6.69) 69 34.2 356 280 HD 751 Е 10 30 (14.02) (73.98) (2.72)(1.35) 240 74 20 203 HD 829 10 30 D

HD type Oil full flow – For higher pressures

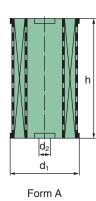

Form A

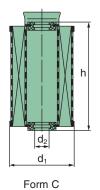
(224.57)

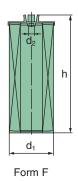

(4.49)

(2.69)

(16.30)

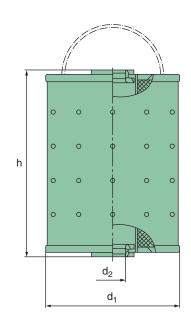

Form D acc. to DIN 73 358




MANN-Nominal flow rate Dimensions in mm $\beta_x \ge 200$ Differential pressure sta-Туре FILTER bility of the filter element (Dimensions in inches) [l/min] [gpm] d, d_2 h [bar] х 150 82.5 47.5 142 HD 929/3 5 20 А (39.63) (3.25) (1.87) (5.59) 82.5 47.5 150 142 HD 929 10 20 А (3.25) (1.87) (5.59) (39.63) 85 46 200 300 HD 938 37 Е 45 (79.26) (3.35) (1.81) (7.87) 250 85 46 200 HD 938/1 8 180 Е (1.81) (7.87) (66.05) (3.35) 46 200 85 200 HD 938/2 20 15 Е (3.35) (7.87) (52.84) (1.81)450 85 46 300 HD 958 37 Е 45 (118.89) (3.35) (1.81) (11.81) 300 85 46 350 HD 958/1 8 180 Е (92.47) (3.35)(1.81)(11.81)46 300 280 85 HD 958/2 20 Е 15 (3.35) (1.81) (11.81) (73.97) 82.5 47.5 257 300 HD 952 9 20 А (3.25) (1.87) (10.12) (79.26) 47.5 82.5 257 300 HD 952/2 20 17 А (3.25) (1.87) (10.12) (79.26) 500 94 48.5 256 HD 1060 10 30 (Bypass +/- 3 bar) D (132.10) (3.72) (1.91) (10.87) 90.5 48.5 329 660 HD 1066 10 30 Е (174.37) (3.569) (1.91)(12.95) 850 114 68.2 414 HD 12 112 10 30 D

HU type Oil full flow

HU types have oil filter elements which are metalfree and are particularly environmentally friendly. After use they can be incinerated without leaving any residue



MANN- FILTER	Nominal flow rate [I/min]	Dimensions in mm (Dimensions in inches)		Filter fineness acc. to ISO 16 889 [µm (c)] * with 50% 99%		Туре	
	[gpm]	d ₁	d ₂	h	separation	efficiency	
HU 718/1 K	34 (8.98)	63.5 <i>(2.50)</i>	31 <i>(1.22)</i>	115 <i>(4.53)</i>	14	38	A
HU 726/2 X	47 (12.42)	64 <i>(</i> 2.52)	25 (0.98)	153 <i>(</i> 6. <i>02</i>)	14	38	А
HU 921 X	27 (7.13)	81 <i>(3.19)</i>	36.5 (1.44)	88.5 <i>(3.48)</i>	20	> 50	С
HU 932/4 X	60 (15.85)	78 (3.07)	23 (0.91)	133 <i>(</i> 5. <i>24)</i>	14	38	А
HU 931/5 X	61 <i>(16.11)</i>	80 <i>(3.15)</i>	39 (1.54)	138 <i>(5.43)</i>	14	38	F
HU 947/1 X	91 <i>(24.04)</i>	78 <i>(</i> 3.07)	23 (0.91)	135 <i>(5.32)</i>	14	38	А
HU 945/2 X	90 (23.77)	82 <i>(</i> 3.23)	39 (1.54)	200 (7.87)	14	38	F
HU 951 X	83 (21.92)	82.6 <i>(</i> 3.25)	36 <i>(1.42)</i>	169 <i>(6.65)</i>	14	38	А
HU 12 140 X	182 <i>(48.08)</i>	118 <i>(4.65)</i>	55.8 <i>(</i> 2.20)	312.5 <i>(12.30</i>)	14	38	F

* In comparison to the previously used calibration, the new calibration with the same filter results in a lower filter fineness with small particles.

PF type Oil partial flow

PF types are mainly partialflow filters for oil.

MANN- FILTER	Filling volume	Dimensions i	n mm <i>(Dimensic</i>	Code according to DIN 71 455	
	[cm³]	d ₁	d ₂	h	
PF 815	310	75 (2.95)	14 <i>(0.55)</i>	104 <i>(4.09)</i>	-
PF 915	520	90 <i>(3.54)</i>	14 <i>(0.55)</i>	110 <i>(4.33)</i>	_
PF 926	630	98 <i>(3.86)</i>	14 <i>(</i> 0.55)	110 <i>(4.33)</i>	-
PF 1025	1300	98 <i>(3.86)</i>	14 <i>(</i> 0.55)	206 (8.11)	-
PF 1050/1	580	90 <i>(3.54)</i>	24 (0.94)	169 <i>(6.65)</i>	-
PF 1055/1	685	90 <i>(3.54)</i>	24 (0.94)	196 (7. <i>72</i>)	-
PF 1155	950	110 <i>(4.33)</i>	14 <i>(</i> 0.55)	125 <i>(4.92)</i>	DIN 71 455 - E 1.5
PF 1190	1600	110 <i>(4.33)</i>	14 <i>(</i> 0.55)	202 (7.95)	DIN 71 455 - E 2.5
PF 1552	5500	150 <i>(</i> 5.91)	32 (1.26)	367 <i>(14.88)</i>	DIN 71 455 - E 8

MANN+HUMMEL Strainer filters

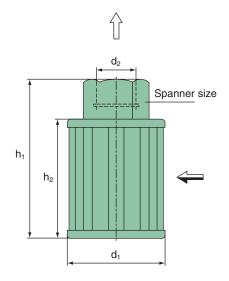
MANN+HUMMEL Strainer filters

These are surface-type filters. They are reasonably priced, robust and are excellently suited to high dirt particle loads and the separation of coarse particles. These strainer filters are designed to be suction filters for installation in tanks or for suction from a reservoir. Strainer filters with a filter housing are fitted as in-line filters in the pipeline.

The advantages at a glance:

- Excellent as a preliminary filter
- Suction filter for the protection of components fitted downstream
- Various levels of filter fineness available on request
- · Low flow resistance
- Suitable for use with highly viscous liquids
- · Easy to fit
- Low maintenance

Design

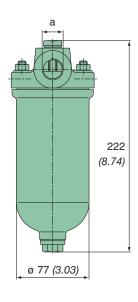

The strainer material is located between robust metal end caps. The strainer material used with strainer filters listed in the catalogue is starpleated in order to maximise the surface area. The flow is from the inside to the outside.

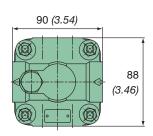
Fitting and maintenance

- Suction filters are screwed directly to the connections of the feed pump or to an appropriate suction pipe.
- When using a housing the filter is screwed in-line on the raw and clean side in the pipeline.
- Housing filters are equipped with a drain screw for the purpose of cleaning.
- Depending on the dirt load a filter cake forms which can be removed from the strainer material by washing.

Strainer filters

Suction filters for use in tanks

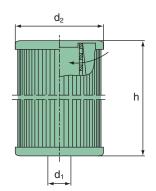

Part no.	Nominal flow rate	Dimensions in mm (Dimensions in inches)					Mesh size
	[l/min] [gpm]	d,	d ₂	h ₁	h ₂	SW	[µm]
62 300 52 551	20 (5.28)	61 <i>(2.40)</i>	G 1/2"	55 (2.17)	42 (1.65)	27 (1.06)	63
62 300 53 571	30 (7.93)	61 <i>(2.40)</i>	G 1/2"	84 <i>(</i> 3.31)	71 <i>(2.80)</i>	27 (1.06)	100
62 300 52 541	30 (7.93)	61 <i>(2.40)</i>	G 3/4"	87 (3.43)	70 (2.76)	36 <i>(1.42)</i>	63
62 500 53 411	45 <i>(11.89)</i>	87 <i>(3.43)</i>	G 1"	85 (3.35)	63 <i>(2.48)</i>	41 <i>(1.61)</i>	100
62 501 52 281	60 <i>(15.85)</i>	87 <i>(3.43)</i>	G 1"	105 <i>(4.13)</i>	84 <i>(</i> 3.31)	41 <i>(1.61)</i>	63
62 501 53 281	60 <i>(15.85)</i>	87 <i>(3.43)</i>	G 1"	105 <i>(4.13)</i>	84 <i>(</i> 3.31)	41 <i>(1.61)</i>	100
62 501 53 291	80 <i>(</i> 21.14)	87 <i>(3.43)</i>	G 1"	155 <i>(6.10)</i>	134 <i>(</i> 5.28)	41 <i>(1.61)</i>	100
62 602 53 251	120 <i>(</i> 31.70)	110 <i>(4.33)</i>	G 1 1/2"	165 <i>(6.50)</i>	120 <i>(4.72)</i>	60 <i>(2.36)</i>	100
62 602 53 261	150 <i>(</i> 39.63)	110 <i>(4.33)</i>	G 1 1/2"	205 (8.07)	160 <i>(6.30)</i>	60 <i>(2.36)</i>	100


Further types available on request.

Strainer filters

Housing filters for coarse particle filtration of oils

These strainer filters with housings in cast iron are designed to handle pressures of between 10 and 40 bar. They are particularly suitable for the filtration of oils such as heating oil, heavy oil or lube oil. The housing can be fitted with strainers of varying mesh sizes and materials. Your MANN+HUMMEL contact partner will be happy to advise you on the best choice for your application.



Part no.	Nominal flow rate [l/min] <i>[gpm</i>]	Permissible operating pressure [bar]	Bypass valve [bar]	Mesh size [µm]	Connection dimension a
		[~~.]	[~~.]	[[]	~
62 301 63 121	50 (13.21)	10	-	100	M 26x1.5
62 301 62 111	50 (13.21)	40	4	63	M 26x1.5
61 402 62 031	100 <i>(</i> 26. <i>42)</i>	10	4	63	M 22x1.5
61 402 61 032 *	100 <i>(</i> 26. <i>42)</i>	10	4	40	M 22x1.5

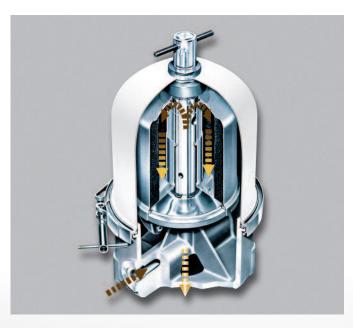
* Strainer in stainless steel

Filter elements for customer housings									
Part no.	Dir	mensions in n	nm	Mesh size					
	(Dim	ensions in inc	ches)						
	d ₁	d ₂	[µm]						
62 300 53 285	24 (0.94)	60 (2.36)	25 (0.98)	100					
62 300 52 591	29 (1.14)	60 <i>(2.36)</i>	71 (2.80)	63					
62 301 52 171	29 (1.14)	60 <i>(2.36)</i>	112 (4.41)	63					
62 501 57 362	29 (1.14)	85 <i>(</i> 3.35)	82 <i>(</i> 3.23)	40					

MANN+HUMMEL Centrifuges

MANN+HUMMEL Centrifuges

MANN+HUMMEL is the market leader worldwide for centrifuges. This product range provides high performance filtration solutions for partial-flow oil. The MANN+HUMMEL centrifuges efficiently separate dirt particles such as soot particles and particles resulting from the abrasion of metal in lube oils in diesel engines. This technology is also suitable and efficient for gearboxes, hydraulic systems and other industrial applications.



The advantages at a glance:

- Improved purity of the oil
- Extended oil service life
- · Longer service intervals
- Reduced engine wear
- Preventative engine protection
- Reduced maintenance costs
- · Lower disposal costs
- Less engine down-times
- Maximum availability for vehicles, engines and machines
- Lower running costs in total
- Improved combustion process and reduced fuel consumption
- Supports systems to minimise exhaust emissions (e.g. exhaust gas recirculation)
- An investment which quickly pays for itself

Function

Oil is pumped into the centrifuge and directed into a hollow spindle from where it is pressed through a cross-hole into the rotor of the centrifuge. When the rotor is full of oil the resulting pressure forces it out through two tangential and opposite nozzles in the bottom of the rotor. This causes the rotor to rotate quickly. The centrifugal force in the rotor causes the dirt particles present accelerate radially and deposit on the internal wall of the rotor. In the course of operation these deposits form a thick cake.

Installation instructions

A MANN+HUMMEL centrifuge is either integrated in the engine concept of the OEM product or can be retrofitted by the end user to existing engines. The partial-flow centrifuge requires a supply of oil under pressure. In most applications the oil feed is achieved using normal engine pressure and via the lube oil pump. If the oil pressure is insufficient, a supplementary pump can be fitted.

The deviation between the longitudinal and vertical axis of the centrifuge should not exceed 15°. A greater degree

ANNE

of inclination occurring temporarily through operation of the engine can be ignored. MANN+HUMMEL can adapt the centrifuge specifications for special applications which require a greater degree of inclination.

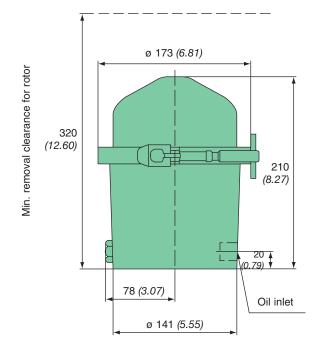
Gravity allows the oil to return from the centrifuge to the oil sump without pressure. Therefore the oil return must be above the oil level. The oil return pipe must have a sufficiently large internal diameter and as low a resistance as possible. In the process of dimensioning a centrifuge for an engine application it is essential that the lube oil system of the engine has sufficient reserves to ensure the additional oil requirement for the operation of the partial-flow centrifuge. This must not compromise the amount of lubrication required for the engine components. In most cases the engine oil pump has enough power to operate a partial-flow centrifuge if it is correctly dimensioned for the

respective engine. Your MANN+HUMMEL contact partner will be happy to advise you on the choice and installation of an oil centrifuge.

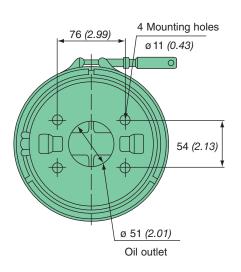
In cases where the retrofitting of a centrifuge directly to the engine is difficult or impossible, MANN+HUMMEL offers solutions for an external fitting solution where the oil return flow to the oil sump is made using compressed air. This means a permanent supply of compressed air is required.

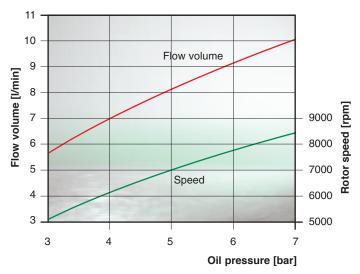
Overview of the MANN+HUMMEL centrifuges

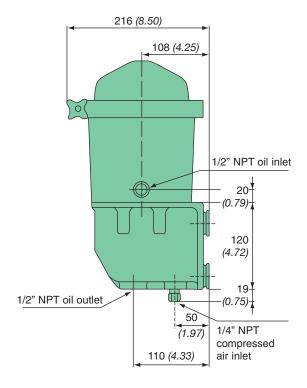
Sizes	FM 090		FM 200			
Туре	FM 090-31	FM 090-LCB	FM 200-21	FM 200-22	FM 200-25	FM 200-28
Part no.	68 991 42 101	68 991 39 301	68 991 19 701	68 991 19 801	68 991 19 901	68 991 20 001
For oil sump volume from/to [I]	15 / 90	15 / 90	40 / 170	40 / 170	40 / 170	40 / 170
Connection for oil inlet	3/8" BSP	1/2" NPT	1/2" BSP	7/8" UNF	M 22x1.5	M 22x1.5
Smallest internal diameter Oil feed pipe [mm]	9.5	-	12	12	12	12
Smallest internal diameter Oil outlet pipe [mm]	38	12	50	50	50	50
Mounting holes for threads	-	-	M 12	1/2" UNC	M 12	M 12
Air inlet connection	1/2" NPT	1/4" NPT	-	_	_	-
Max. air requirement [l/h]	-	36	-	-	-	-
Rotor dirt holding capacity [l]	0.9	0.9	2.0	2.0	2.0	2.0
Rotor oil volume [l]	1.125	1.125	2.3	2.3	2.3	2.3
Switch-off valve [bar]	1.3	1.3	2.5	2.1	2.5	2.1
Empty weight approx. [kg]	3.5	6.0	9.5	9.5	9.5	9.5

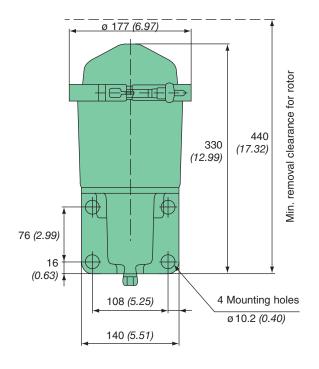

Sizes	FM 400						
Туре	FM 400-21	FM 400-23	FM 400-24	FM 400-26			
Part no.	68 991 34 401	68 991 38 801	68 991 36 801	68 991 34 701			
For oil sump volume from/to [I]	200 / 1500	200 / 1500	200 / 1500	200 / 1500			
Connection for oil inlet	3/4" BSP	3/4" BSP	5/16" BSP	M 27x1.5			
Smallest internal diameter	19	19	19	19			
Oil feed pipe [mm]	19	19	19	19			
Smallest internal diameter	76	76	76	76			
Oil outlet pipe [mm]	70	70	70	70			
Mounting holes for threads	M 12	M 12	1/2" UNC	M 12			
Air inlet connection	-	-	-	-			
Max. air requirement [l/h]	-	-	-	-			
Rotor dirt holding capacity [I]	4.0	4.0	4.0	4.0			
Rotor oil volume [I]	4.5	4.5	4.5	4.5			
Switch-off valve [bar]	_	2.5	2.5	2.5			
Empty weight approx. [kg]	22	22	22	22			

Sizes		FM 600							
Туре	FM 600-21	FM 600-22	FM 600-23	FM 600-24	FM 600-25	FM 600-26			
Part no.	68 991 18 701	68 991 18 801	68 991 18 901	68 991 19 001	68 991 19 201	68 991 19 301			
For oil sump volume from/to [I]	200 / 1500	200 / 1500	200 / 1500	200 / 1500	200 / 1500	200 / 1500			
Connection for oil inlet	3/4" BSP	3/4" BSP	3/4" BSP	15/16" UNF	3/4" NPT	M 27x1.5			
Smallest internal diameter	19	19	19	19	19	19			
Oil feed pipe [mm]			10	10	10	10			
Smallest internal diameter	76	76	76	76	76	76			
Oil outlet pipe [mm]	70	70	70	70	70	70			
Mounting holes for threads	M 12	M 12	M 12	1/2" UNC	1/2" UNC	M 12			
Air inlet connection	-	-	-	-	-	-			
Max. air requirement [l/h]	-	-	-	-	-	-			
Rotor dirt holding capacity [I]	6.0	6.0	6.0	6.0	6.0	6.0			
Rotor oil volume [l]	6.5	6.5	6.5	6.5	6.5	6.5			
Switch-off valve [bar]	-	3.5	2.5	2.5	2.5	2.5			
Empty weight approx. [kg]	25	25	25	25	25	25			

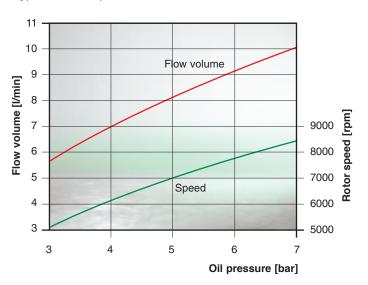

FM 090 Centrifuge


- Suitable for engine oil volumes of 15 up to 90 litres
- Dirt holding capacity of the rotor: 0.9 litres
- Oil capacity of the rotor: 1.125 litres
- Internal diameter of the oil feed pipe: min. 9.5 mm
- Internal diameter of the oil return pipe: min. 38 mm
- This model is available with a cleanable rotor. The rotor is equipped with a paper insert (part no. 68 933 30 101) for simpler maintenance.
- Additional options according to customer specifications are available on request
- Empty weight: approx.
 3.5 kg


Part no.	Туре	Connection thread oil inlet	Switching pressure shut-off valve [bar]
68 991 42 101	FM 090-31	3/8" BSP	1.3



FM 090-LCB Centrifuge


Part no.	Туре	Connection thread oil pipe	thread com-	Switching pressure shut- off valve [bar]
68 991 39 301	FM 090-LCB Transit	1/2" NPT	1/4" NPT	1.3

- Integrated mounting plate for external mounting away from the engine
- Suitable for engine oil volumes from 15 up to 90 litres
- Dirt holding capacity of the rotor: 0.9 litre
- Oil capacity of the rotor: 1.125 litres
- Internal diameter of the oil return pipe: min. 12 mm
- Compressed air consumption: max. 36 l/h. This model is available with a cleanable rotor. The rotor is equipped with a paper insert (part no. 68 933 30 101) for simpler maintenance.
- Empty weight: approx. 6 kg

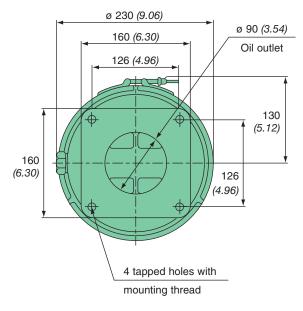
Characteristics

Typical rotor output for SAE 30 oil at 100 °C

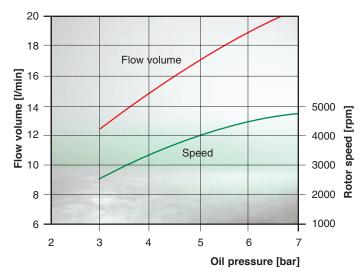


FM 200 Centrifuge

- Suitable for engine oil volumes between 40 and 170 litres
- Dirt holding capacity of the rotor: 2 litres
- Oil capacity of the rotor: 2.3 litres
- Internal diameter of the oil feed pipe: min. 12 mm
- Internal diameter of the oil return pipe: min. 50 mm
- This model is available with a cleanable rotor. The rotor is equipped with a paper insert (part no. 68 903 22 001) for simpler maintenance.
- The inlet thread and shut-

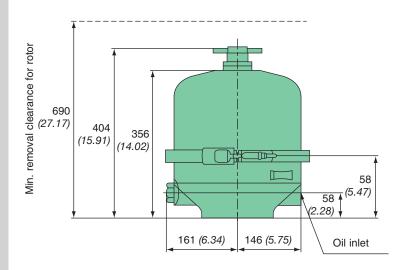

off valve can be matched to customer specifications.

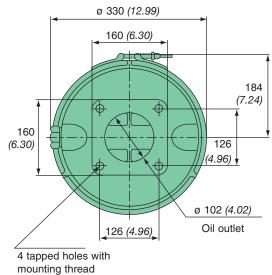
- The following accessories are available for this centrifuge:
 - A mounting plate is available for external fitting away from the engine with compressed-air driven oil return (part no.
 68 999 11 101).
- A release tool for removing the rotor (part no. 68 906 90 601)
- A pulling-off device for the central tube (part no.
 68 906 90 901)
- Empty weight: approx. 9.5 kg


Part no.	Туре	Oil inlet connection thread	Switching pressure shut-off valve [bar]	Mounting thread
68 991 19 701	FM 200-21	1/2" BSP	2.5	M 12
68 991 19 801	FM 200-22	7/8" UNF	2.1	1/2" UNC
68 991 19 901	FM 200-25	M 22x1.5	2.5	M 12
68 991 20 001	FM 200-28	M 22x1.5	2.1	M 12

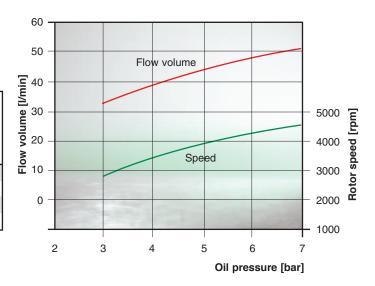
Characteristics

Typical rotor output for SAE 30 oil at 100 °C



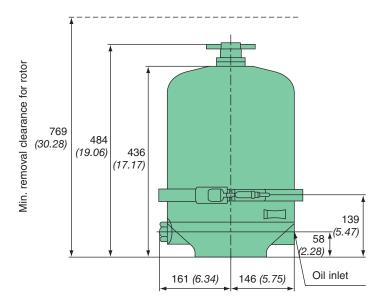

FM 400 Centrifuge

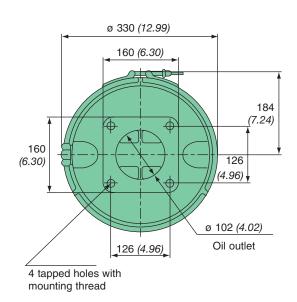
- Suitable for engine oil volumes between 200 and 1500 litres
- Dirt holding capacity of the rotor: 4 litres
- Oil capacity of the rotor: 4.5 litres
- Internal diameter of the oil feed pipe: min. 19 mm
- Internal diameter of the oil return pipe: min. 76 mm
- This model is exclusively available with a cleanable rotor. The rotor is equipped with a paper insert (part no. 68 933 22 601) for simpler maintenance.


- Oil inlet thread and shut-off valve can be adapted to meet customer specifications
- A mounting plate is available for this centrifuge for external fitting away from the engine with compressed-air driven oil return (part no. 68 999 11 108).
- A release tool is available for removing the rotor (part no. 68 906 91 301).
- Empty weight: approx. 22 kg

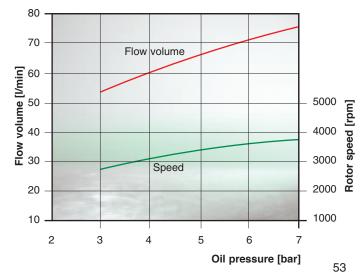
Characteristics

Typical rotor output for SAE 30 oil at 75 °C


Part no.	Туре	Oil inlet	Switching	Mounting
		connection	pressure	thread
		thread	shut-off valve	
			[bar]	
68 991 34 401	FM 400-21	3/4" BSP	_	M 12
68 991 38 801	FM 400-23	3/4" BSP	2.5	M 12
68 991 36 801	FM 400-24	5/16" UNF	2.5	1/2" UNC
68 991 34 701	FM 400-26	M 27x1.5	2.5	M 12


FM 600 Centrifuge

- Suitable for engine oil volumes between 200 and 1500 litres
- Dirt holding capacity of the rotor: 6 litres
- Oil capacity of the rotor: 6.5 litres
- Internal diameter of the oil feed pipe: min. 19 mm
- Internal diameter of the oil return pipe: min. 76 mm
- This model is exclusively available with a cleanable rotor. The rotor is equipped with a paper insert (part no. 68 900 00 815) for simpler maintenance.


- Oil inlet thread and shut-off valve can be adapted to customer specifications
- A mounting plate is available for this centrifuge for external fitting away from the engine with compressed-air driven oil return (part no. 68 999 11 101).
- A release tool is available for removing the rotor (part no. 68 906 91 301).
- Empty weight: approx. 25 kg

Characteristics

Typical rotor output for SAE 30 oil at 75 °C

Part no.	Туре	Oil inlet connection thread	Switching pressure shut-off valve [bar]	Mounting thread
68 991 18 701	FM 600-21	3/4" BSP	-	M 12
68 991 18 801	FM 600-22	3/4" BSP	3.5	M 12
68 991 18 901	FM 600-23	3/4" BSP	2.5	M 12
68 991 19 001	FM 600-24	15/16" UNF	2.5	1/2" UNC
68 991 19 201	FM 600-25	3/4" NPT	2.5	1/2" UNC
68 991 19 301	FM 600-26	M 27x1.5	2.5	M 12

MANN+HUMMEL Fuel filters

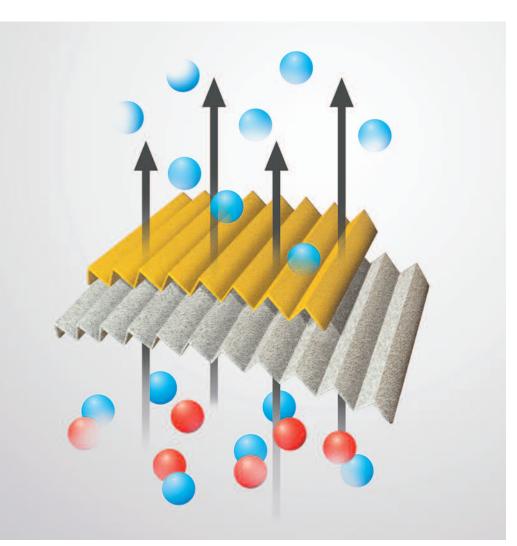
Application areas for MANN+HUMMEL fuel filters

The rapid development of diesel technology has made the filtration of diesel fuel before it reaches the injection system a top priority. Badly filtered diesel causes particle erosion, corrosion, and can lead to damage in the injection system. The contamination of fuel with particles and water occurs during production, transportation, in storage, when the fuel is delivered, and when the tank is filled. This contamination has to be removed in a reliable way. The MANN+HUMMEL product range has the right filter for all types of injection systems.

We recommend the MANN+HUMMEL PreLine (see page 68) as a preliminary fuel filter to pre-separate water and coarse particles.

Application area	Typical required minimum separation efficiency	Filter medium	Page
In-line injection pump	> 20 %	Standard medium	70
Distributor pump	> 67 %	Graded medium	71
Unit injector	> 85 %	Multigrade HC medium	71
Common rail	> 95 % > 98.6 %	Multigrade HE medium Multigrade HE+ Medium	71

MANN+HUMMEL Multigrade


Fuel filter media

Modern diesel and petrol injection systems require the highest fuel quality and therefore set ever higher standards for the filtration of fuel. The newly patented MANN+HUMMEL multigrade media were developed for diesel and petrol engines and meet today's highest requirements for fuel filter elements. Multilayer technology ensures that sensitive injection systems are protected from even the finest particles. In comparison to other media available on the market the multigrade media offers a performance increase in dirt holding capacity of up to 100% with the same high initial separation efficiency.

Multigrade high performance filtration

The family of multigrade media represents an important milestone in the field of fuel filtration. These media are used in all our high performance filters.

On page 61 of this catalogue you will find MANN+HUMMEL spin-on filters with the multigrade media HC (high capacity with water separation), HE (high filter fineness) and HE+ (highest filter fineness). This range economically covers all the requirements of modern fuel filtration. The MANN+HUMMEL multigrade media guarantee the protection necessary for the sensitive injection systems of today.

MANN+HUMMEL multigrade media:

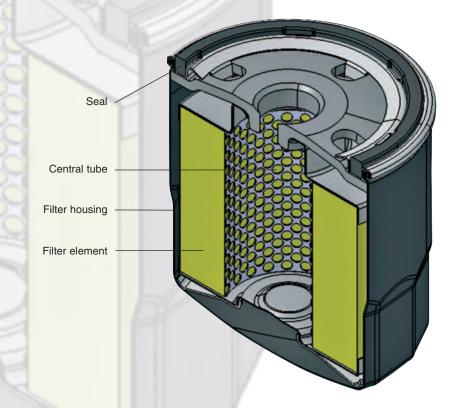
Extended service life and high initial separation efficiency are achieved through an open layer with high dirt holding capacity on the in-flow side and a fine filter layer on the out-flow side.

MANN+HUMMEL Spin-on fuel filters

MANN+HUMMEL spin-on filters are used for the filtration of fuel in a number of applications. MANN+HUMMEL has been a leading manufacturer of spin-on filters worldwide for many years. The filters are distributed under the MANN-FILTER brand and under a variety of customer brands.

The advantages at a glance:

- Available with a range of filter media
- Efficient separation and high dirt holding capacity with low pressure drop
- Robust, anti-corrosion housing with high pulsation and pressure stability
- Geometry designed for optimum flow
- Undetachable seals
- Stable, non-collapsible central tube
- Non-return valve with low pressure drop

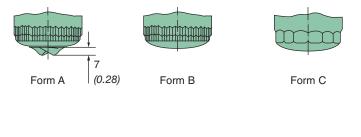

Design

The spin-on filter consists of a robust metal housing with the fitted filter element. Depending on the application, the spin-on filter can be equipped with various components such as a different filter medium, non-return valve or bypass valve, etc.. The liquid to be filtered enters the cover plate through the concentric inlet openings, flows through the filter element and the cleaned liquid then leaves through the central connection. The filter cover plate has an undetachable seal which ensures secure sealing to the outside under all operating conditions.

Maintenance

The time for maintenance is usually defined by the engine or machine manufacturer. Maintenance simply requires replacement of the complete spin-on filter. The spin-on filter can easily be removed using a MANN+HUMMEL filter wrench (see page 88).

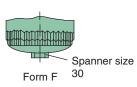
Cross-section picture


MANN+HUMMEL Spin-on fuel filters

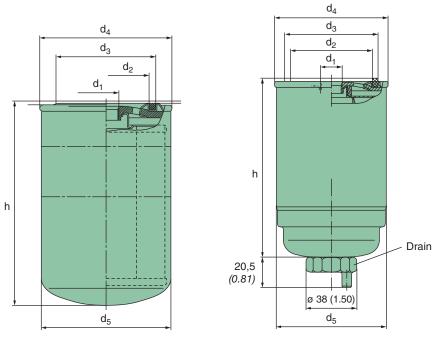
MANN+HUMMEL fuel filters filter out the finest particles from the fuel and thus effectively protect the injection system against wear and dirt particles. They are available with or without a water trap and drain.

Types of spin-on filters

Reference is made to the following types in the dimension table.



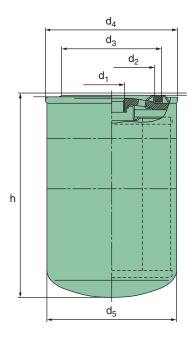
Form D


Form E

WK type, WDK type In-line fuel injection pumps

These filters are a particularly economic solution for the typical requirements of in-line injection pumps.

We recommend use of our PreLine preliminary fuel filter (see page 68) for water separation in addition to the main filter.


Fig. 2	
--------	--

MANN- FILTER	Fig.	Nominal flow rate [l/h] [gph]	Dimensions in mm (Dimensions in inches) $d_1 \mid d_2 \mid d_3 \mid d_4 \mid d_5 \mid h$					Separation efficiency *	Permissible operating pressure [bar]	Type (see page 59)	
		labrij	u ₁	u ₂	u ₃	u ₄	u ₅			[bui]	
WK 712/2	1	150 <i>(</i> 39.63)	M 16x1.5	62 <i>(2.44)</i>	71 <i>(2.80)</i>	80 <i>(3.15)</i>	76 <i>(2.99)</i>	80 <i>(</i> 3.15)	> 20%	6	E
WK 723	1	180 (47.56)	M 16x1.5	62 (2.44)	71 (2.80)	80 <i>(</i> 3.15)	76 (2.99)	124 <i>(4.88)</i>	> 20%	9.5	E
WK 731	1	180 (47.56)	M 16x1.5	62 (2.44)	71 (2.80)	80 <i>(</i> 3.15)	76 (2.99)	117 <i>(4.61)</i>	> 20%	6	Е
WK 731/1	1	180 (47.56)	M 14x1.5	30 (1.18)	38 (1.50)	80 <i>(</i> 3.15)	76 (2.99)	115 <i>(4.53)</i>	> 20%	2.5	E
WK 842 ¹⁾	2	200 <i>(52.84)</i>	M 16x1.5	61 <i>(2.40)</i>	70 (2.76)	84 <i>(</i> 3.31)	81 <i>(</i> 3. <i>19</i>)	134.5 <i>(</i> 5.30)	> 20%	6	-
WK 842/6 ¹⁾	2	300 (79.26)	M 16x1.5	61 <i>(2.40)</i>	70 (2.76)	84 <i>(</i> 3.31)	81 <i>(</i> 3.19)	134.5 <i>(5.30)</i>	Strainer 63 µm	6	-
WK 950/3	1	350 <i>(</i> 92)	1"-14 NS	62 (2.44)	71 <i>(2.80)</i>	96 <i>(</i> 3.78)	93 <i>(</i> 3.66)	170 <i>(</i> 6.69)	> 20%	2.5	В
WK 962/4	1	480 (126.82)	M 16x1.5	62 (2.44)	71 <i>(</i> 2.80)	96 <i>(</i> 3.78)	93 <i>(</i> 3.66)	210 <i>(</i> 8. <i>27</i>)	> 20%	2.5	В
WDK 962/10	1	600 <i>(158.52)</i>	M 16x1.5	62 (2.44)	71 <i>(2.80)</i>	96 <i>(</i> .78)	93 <i>(</i> .66)	212 <i>(</i> 8.35)	> 45%	15	Е

 $^{*}~$ All figures relate to a particle size of 3-5 μm (c) and are given acc. to ISO/TR 13 353 (1994).

1) with drain

WK type, WDK type Fuel distributor pumps / unit injectors / common rail

These fuel filters from MANN+HUMMEL use our high performance graded and patented multigrade media. The multigrade media are especially characterised by a simultaneous high dirt holding capacity and excellent separation performance. For common rail, unit injectors and distributor pumps we recommend the use of our PreLine preliminary fuel filter (see page 68) for the separation of water.

MANN- FILTER	Nominal flow rate [l/h] [gph]	Dimensi d ₁	ons in i	mm <i>(Dii</i>	mensio	ns in in d ₅	<i>ches)</i> h	Separation efficiency *	Permissible operating pressure [bar]	Medium	Type (see page 59)
WDK 719	170 <i>(44.91)</i>	M 16x1.5	62 <i>(2.44)</i>	71 <i>(2.80)</i>	80 <i>(3.15)</i>	76 <i>(</i> 2.99)	127 <i>(</i> 5.00)	> 85%	7	Multigrade HC	E
WDK 725 ¹⁾	120 <i>(31.70</i>)	M 16x1.5	62 <i>(2.44)</i>	71 <i>(2.80)</i>	80 <i>(3.15)</i>	76 <i>(</i> 2.99)	146 <i>(5.75)</i>	> 67%	6	Graded medium	E
WDK 925	250 (66.05)	M 22x1.5	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	144 <i>(</i> 5.67)	> 85%	15	Multigrade HC	E
WK 940/2	250 (66.05)	M 24x1.5	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	144 <i>(</i> 5.67)	> 85%	6	Multigrade HC	E
WK 962/7	650 (171.73)	M 18x1.5	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	212 <i>(</i> 8.35)	> 85%	7	Multigrade HC	E
WDK 962/15	590 (155.88)	M 16x1.5	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	212 <i>(</i> 8.35)	> 67%	10	Graded medium	E
WDK 962/16	530 <i>(140.03)</i>	M 16x1.5	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	212 <i>(</i> 8.35)	> 85%	15	Multigrade HC	E
WDK 962/14	530 (140.03)	M 16x1.5	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	212 (8.35)	> 95%	10	Multigrade HE	E
WDK 962/12	580 (153.24)	M 16x1.5	62 <i>(2.44)</i>	71 <i>(2.80)</i>	96 <i>(3.78)</i>	93 <i>(3.66)</i>	212 <i>(</i> 8.35)	> 98.6%	15	Multigrade HE+	E
WDK 11 102/7	1000 <i>(264.20)</i>	M 32x1.5	93 <i>(3.66)</i>	104 <i>(4.09)</i>	113 <i>(4.45)</i>	108 <i>(4.25)</i>	262 (10.31)	> 67%	7	Graded medium	E
WDK 11 102/1	860 (227.21)	M 32x1.5	93 <i>(3.66)</i>	104 <i>(4.09)</i>	113 <i>(4.45)</i>	108 <i>(4.25)</i>	262 (10.31)	> 85%	7	Multigrade HC	Е
WDK 11 102/6	860 (227.21)	M 32x1.5	93 <i>(3.66)</i>	104 <i>(4.09)</i>	113 <i>(4.45)</i>	108 <i>(4.25)</i>	262 (10.31)	> 95%	7	Multigrade HE	E
WDK 11 102/3	860 <i>(</i> 227.21)	M 32x1.5	93 <i>(3.66)</i>	104 <i>(4.09)</i>	113 <i>(4.45)</i>	108 <i>(4.25)</i>	262 (10.31)	> 98.6%	7	Multigrade HE+	E

 $^{*}\,$ All figures relate to a particle size of 3-5 μm (c) and are given acc. to ISO/TR 13 353 (1994).

1) with drain

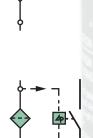
MANN+HUMMEL In-line fuel filters

MANN+HUMMEL In-line fuel filters

The range of

MANN+HUMMEL in-line fuel filters starts with the PreLine preliminary filter for the separation of water and includes the main fuel filter with single or duplex versions, right up to duplex versions, right up to duplex filters with changeover. The filtration characteristics are mainly defined by the spinon filter used or the filter media.

The advantages at a glance:


- Easy fitting in existing lines
- Robust, stable cast aluminium design
- More flexibility can be added to the standard version by the addition of an optional optical or electrical service switch (see pages 89+90)
- Duplex types with changeover are available and are particularly suitable for marine applications
- · Low pressure drop
- Proven quality of the MANN+HUMMEL spin-on filter

Design

The filter consists of the filter head with connection threads and mounting possibilities and the MANN+HUMMEL spin-on filter. The MANN+HUMMEL service indicator or service switch and bypass valve have to be selected so as to ensure that necessary filter maintenance is signalled before the bypass valve opens. Please contact your MANN+HUMMEL contact partner for further information.

Available versions:

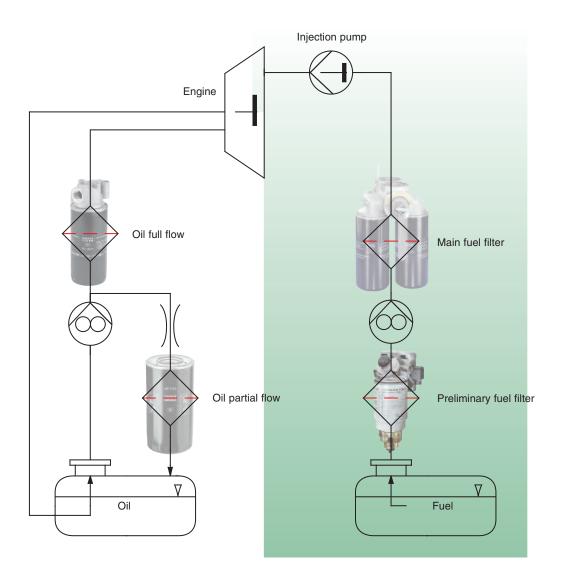
- · with service indicator
- with service switch (make/break contact convertible)

WK 731 WK 10

WK 731

AGE-ANWEISUN

ing mit Dieselöl leicht anner nufschrauben und von Hand hiziehen. Im, bis keine Luftblasen me^y er sind. Dit pröfen - evtl. nachziehen.


Fitting and maintenance

The filter is fitted in the pipeline, whereby the flow direction has to be observed. This is indicated by arrows on the connection threads.

The time for maintenance is usually defined by the engine or equipment manufacturer. Maintenance simply requires replacement of the complete spin-on filter. The spin-on filter can be easily removed using the respective MANN+HUMMEL filter wrench (see page 88).

The in-line filter allows various combinations between the spin-on filter and the filter head. This catalogue only lists the basic types. If you do not find an in-line filter suitable for your application, please get in touch with your MANN+HUMMEL contact partners. They will be happy to advise you on the appropriate in-line filter consisting of a filter head, spin-on filter and accessories.

Diagram of filter arrangement around the engine

Overview of fuel filter heads

Single head, screwed on, Page 69 with optional manual pump and heater

This head is designed especially for our PreLine preliminary fuel filter series. It is optionally available with a manual pump and heater.

Single head

The universal head for fuel filtration to reduce weight and save space. In the horizontal plane there are three usable inlet openings and one outlet in the vertical plane. The head is equipped with a vent screw.

Page 70

MONTAGE-ANWEISUNG - INSTALLATIO

Arrow of the field of the

KRAFTSTOFFFILTER FUEL FILTER FILTRE À COMBUSTIEL

Overview of fuel filter heads

Page 73

Duplex with changeover

Both heads are manufactured in cast aluminium. They allow a change of filter during operation. Using a changeover lever it is possible to direct the flow through a single filter or through both filters in parallel. If necessary a MANN+HUMMEL service switch or service indicator can be fitted (see pages 89+90). Both heads are equipped with venting.

Duplex with changeover in spheroidal graphite cast iron (EN-GJS-400-15)

This duplex filter is classified according to prevailing regulations in the marine field such as SOLAS * and GL ** and is predestined for use in marine applications on ships. High quality PTFE sealing elements are used on the changeover handle. A change of filter during operation is possible by changing to only one filter.

- * SOLAS = Safety of Life at Sea
- ** GL = German Lloyd

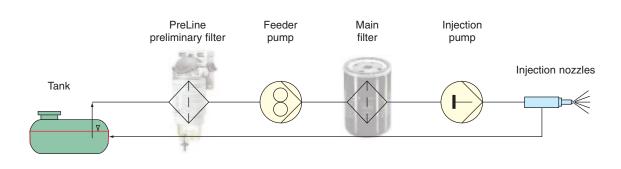
In-line fuel filters PreLine preliminary filter for the separation of water

Increasing pressures in injection systems have in turn considerably increased the requirements for fuel filtration with regard to the separation of water and particles. The injection pump manufacturers have therefore drawn up a list of requirements. MANN+HUMMEL filters more than completely fulfil the requirements. Our PreLine preliminary fuel filter series reliably meets the required water separation efficiency of at least 93 % acc. to ISO 4020 thanks to the specially developed meltblown medium.

The standard version has a manual pump and manual drain. Other versions are available with an electrical diesel heater and water sensor.

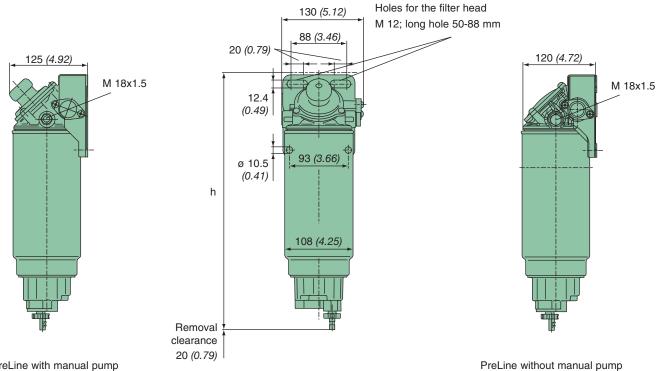
PreLine 270

PreLine 420 with heater and water sensor



Water trap and fitting tool

The advantages at a glance:


- Excellent water separationDesign with highly integra-
- ted function
- High dynamic stiffness
- Optional: electrical heater in the inflow
- Increases the filter service life of the main filter
- Ideal as retrofit solution
- Protects modern injection systems against damage caused by corrosion and abrasion
- Reduces costs through longer engine life
- Reduces repair costs

Typical arrangement of the fuel filter around the engine

In-line fuel filters

PreLine preliminary filter for the separation of water

PreLine with manual pump

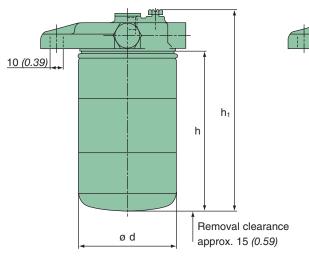
The following is valid for all PreLine variations:

Water separation: > 93 % Operating pressure: 4 bar

Separation efficiency acc. to ISO/TR 13 353 for 3-5 μm particles: Multigrade medium PF: > 45% Multigrade medium PFO: > 10%

Accessories:

Heater for fitting in the filter head: part no. 29 017 00 202 (24 V, 350 W; temperature switching point 5 °C, switches automatically on and off) Water trap: part no. 66 606 12 982 Fitting tool: part no. LS 7/4


Part no.	Туре	Nominal flow rate [l/h] [gph]	Dimensions in mm (Dimensions in inches) h	MANN- Multigrade medium PF	FILTER Multigrade medium PFO	Filter head	Water trap
66 606 62 251				PL 420/1	_	with pump	with sensor
66 606 62 255				PL 420/1	-	with pump	without sensor
66 606 62 257				PL 420/1	-	without pump	with sensor
66 606 62 253	PreLine	420	406	PL 420/1	-	without pump	without sensor
66 606 62 261	420	(110.96)	(15.98)	-	PL 420	with pump	with sensor
66 606 62 265				-	PL 420	with pump	without sensor
66 606 62 267				-	PL 420	without pump	with sensor
66 606 62 263				_	PL 420	without pump	without sensor
Part no.	Туре	Nominal	Dimensions in mm	MANN-	FILTER	Filter head	Water

Part no.	Туре	Nominal flow rate [l/h] <i>[gph]</i>	Dimensions in mm (Dimensions in inches) h	MANN- Multigrade medium PF	FILTER Multigrade medium PFO	Filter head	Water trap
66 604 62 251				PL 270/1	_	with pump	with sensor
66 604 62 255				PL 270/1	-	with pump	without sensor
66 604 62 257				PL 270/1	-	without pump	with sensor
66 604 62 253	PreLine	270	326	PL 270/1	-	without pump	without sensor
66 604 62 261	270	(71.33)	(12.83)	-	PL 270	with pump	with sensor
66 604 62 265				-	PL 270	with pump	without sensor
66 604 62 267				-	PL 270	without pump	with sensor
66 604 62 263				_	PL 270	without pump	without sensor

In-line fuel filters Main filter with single head

The following shows a selection of MANN+HUMMEL in-line filters equipped with our proven fuel filters. Many other combinations are also available.

Please contact your MANN+HUMMEL contact partner for more information.

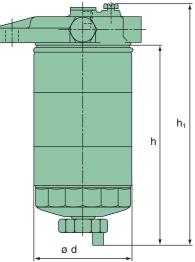
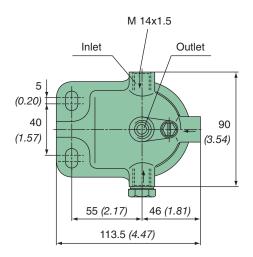
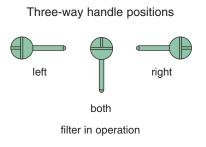
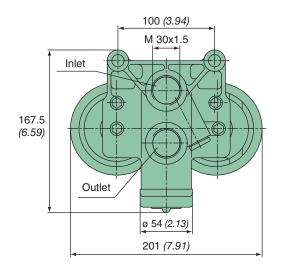



Fig. 1

Fig. 2

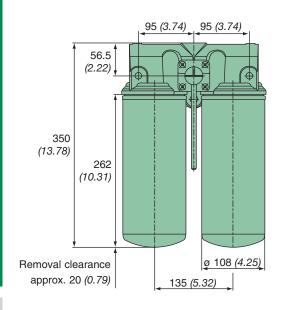


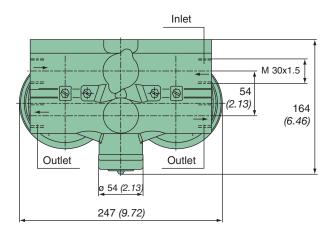

Part no.	Fig.	MANN- FILTER	Nominal flow rate [l/h]	max. operating pressure		ensions in nsions in ir		Drain
		(see page 60)	[gph]	[bar]	h	h ₁	d	
66 403 62 182	1	WK 723	180 <i>(47.56)</i>	2.5	126 <i>(4.96)</i>	153 <i>(</i> 6. <i>02)</i>	76 (2.99)	no
66 404 62 242	1	WK 731	180 (47.56)	2.5	119 <i>(4.69)</i>	144 <i>(</i> 5.67)	76 (2.99)	no
66 405 62 112	2	WK 842	200 <i>(52.84)</i>	2.5	155 <i>(6.10)</i>	182 (7.17)	80 <i>(3.15)</i>	yes
66 400 62 252	2	WK 842/6	300 (79.26)	2.5	155 <i>(6.10)</i>	182 <i>(7.17</i>)	81 <i>(3.19)</i>	yes

In-line fuel filters

In-line duplex main filter with changeover

The combination of the unbeatable in-line filter with a 50 28 duplex function allows either (1.97) (1.10) parallel operation of both the spin on filters or operation with respectively one of the spin-on filters. When the flow is restricted to one of the fil-294 ters, it is possible to change (11.57) 212 the other filter without stop-(8.35) ping the engine. These filter heads are equipped with MANN+HUMMEL spin-on filters containing graded and multigrade media. Removal clearance approx. 20 (0.79)

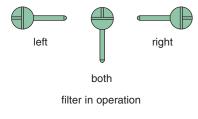

ø 93 (0.22)

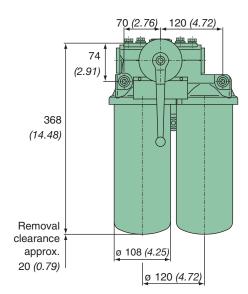

102 (4.02)

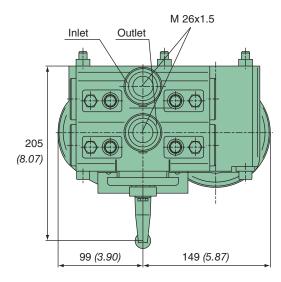

Part no.	MANN- FILTER (see page 61)	Nominal flow rate [l/h] <i>[gph]</i>	max. operating pressure [bar]	Medium
66 511 82 110	WDK 962/16	530 <i>(140.03)</i>	15	Multigrade HC
66 511 82 120	WDK 962/14	530 (140.03)	10	Multigrade HE
66 511 82 130	WDK 962/12	580 (153.24)	10	Multigrade HE+

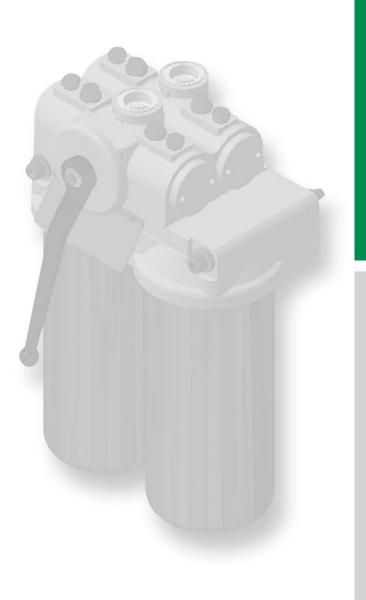
In-line fuel filters

Duplex main filter with changeover, horizontal inlet and outlet



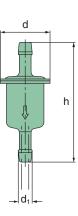

Part no.	MANN- FILTER (see page 61)	Nominal flow rate [l/h] <i>[gph]</i>	max. operating pressure [bar]	Medium
66 619 82 100	WDK 11 102/7	1000 <i>(246.20)</i>	7	Graded medium
66 619 82 110	WDK 11 102/1	860 (227.21)	7	Multigrade HC
66 619 82 120	WDK 11 102/6	860 (227.21)	7	Multigrade HE
66 619 82 130	WDK 11 102/3	860 <i>(</i> 227.21)	7	Multigrade HE+


Three-way handle positions

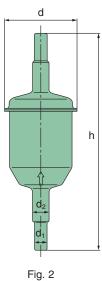


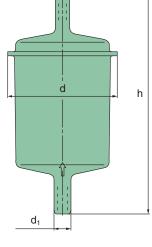
In-line fuel filters

Duplex main filter with changeover, inlet and outlet from above



Part no.	MANN- FILTER	Nominal flow rate [l/h]	max. operating pressure	Medium
	(see page 61)	[gph]	[bar]	
66 612 82 121	WDK 11 102/7	1000 (246.20)	7	Graded medium
66 612 82 131	WDK 11 102/1	860 <i>(227.21)</i>	7	Multigrade HC
66 612 82 141	WDK 11 102/6	860 <i>(227.21)</i>	7	Multigrade HE
66 612 82 151	WDK 11 102/3	860 <i>(227.21)</i>	7	Multigrade HE+


In-line fuel filters Main filter - Fitting in flexible hose lines


For less demanding filtration requirements our especially economic small filter in synthetic material is available for fitting in flexible hose lines. These filters are characterised by relatively high flow rates for their small size.

MANN-FILTER	Fig.	Dime	nsions in mm <i>(L</i>	nches)	Mesh size	
		d	d ₁	[µm]		
WK 21	1	21 <i>(</i> 0.83)	6 (0.24)	-	50 (1.97)	50
WK 21/2	1	21 <i>(</i> 0.83)	6 (0.24)	_	50 (1.97)	136
WK 31/2	2	35 (1.38)	6 <i>(0.24)</i>	8 (0.32)	104 <i>(4.09)</i>	Filter paper element
WK 31/4	2	37 (1.46)	8 (0.32)	-	104 <i>(4.09)</i>	200
WK 31/5 ¹⁾	2	37 (1.46)	8 ¹⁾ (0.32)	-	105 <i>(4.13)</i>	200
WK 32	2	37 (1.46)	6 (0.24)	8 (0.32)	142 (5.59)	Filter paper element
WK 43/1	3	59 <i>(2.32)</i>	8 <i>(0.32)</i>	-	108 <i>(4.25)</i>	Filter paper element

1) Right-angled outlet connection

Further types available on request.

MANN+HUMMEL Fuel filter elements

MANN+HUMMEL Fuel filter elements

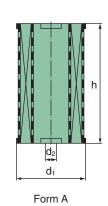
MANN+HUMMEL filter elements for fuel are equipped with a star-pleated bellows and feature an ideal surface for the retention of dirt particles with a correspondingly longer service life.

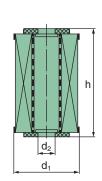
The advantages at a glance:

- Consistently high separation
 efficiency
- Filter element with high dirt holding capacity thanks to maximised filter surface area
- Special pleat impregnation allows the large filter surface area to be effective for the whole period of use
- Special impregnation resistant to water and fuel up to a temperature of 140 °C
- Various versions available acc. to DIN and ISO standards
- Highly economic solution with intense machine use through re-utilisation of filter housing on the machine side.

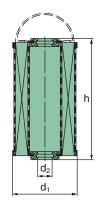
Design

The filter element consists of the two end caps with the filter medium fitted in the middle. Depending on the type of element, end caps are available in metal or metalfree versions. The end caps are fitted with seals which ensure reliable sealing between the raw and the clean side.


Depending on the application, filter elements are available with element protection through an integrated handle. The flow of liquid through the element takes place from the outside to the inside.


Maintenance

The time when maintenance is required is usually defined by the engine or machine producer. Maintenance simply requires replacement of the used element.


P type In-line fuel injection pumps

These filter elements are mainly used with in-line injection pumps used in diesel engines. As with the spin-on filters the selection of the recommended separation efficiency is defined by the technology of the injection system (see page 66) and the quality of the fuel.

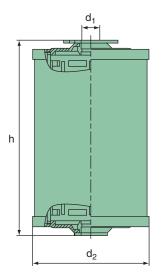
Form B

Form D acc. to DIN 73 358

MANN-FILTER	Nominal flow rate [I/h]	Dimensions in	n mm <i>(Dimensi</i>	ons in inches)	Separation efficiency *	Туре
	[gph]	d ₁	d ₂	h		
P 46/1	35 (9.25)	40 (1.57)	8.5 <i>(</i> 0.33)	133 <i>(</i> .24)	> 20%	В
P 78	40 (10.57)	65 <i>(2.56)</i>	14 <i>(</i> 0.55)	53 <i>(2.09)</i>	> 45%	А
P 609 4)	30 (7.93)	51 <i>(2.01)</i>	8 ²⁾ (0.31)	68 <i>(</i> 2.68)	> 20%	В
P 707 4)	90 ³⁾ (23.78)	65 <i>(2.56)</i>	14 ¹⁾ (0.55)	116 <i>(4.57)</i>	> 20%	D
P 715 ⁴⁾	65 ³⁾ (17.17)	65 <i>(2.56)</i>	14 ¹⁾ (0.55)	65 <i>(2.56)</i>	> 20%	D
P 725	150 <i>(</i> 39.63)	65 <i>(2.56)</i>	14 <i>(</i> 0.55)	100.5 <i>(3.96)</i>	> 20%	А
P 810	70 (18.49)	68 <i>(2.68)</i>	21 <i>(</i> 0.83)	84 <i>(</i> 3.31)	> 20%	А
P 811 4)	120 ³⁾ <i>(31.70)</i>	83 <i>(</i> 3.27)	14 <i>(</i> 0.55)	146 <i>(</i> 5.75)	> 20%	D
P 824	80 <i>(153.24)</i>	72 (2.83)	32 (1.26)	89 <i>(3.50)</i>	> 20%	А
P 825 4)	70 (18.49)	77 (3.03)	26 (1.02)	100 <i>(</i> 3.94)	> 20%	В
P 921/2 4)	120 <i>(31.70)</i>	83 <i>(</i> 3.27)	26 (1.02)	118 <i>(4.65)</i>	> 20%	В
P 934 ⁵⁾	150 <i>(</i> 39.63)	83 <i>(3.27)</i>	10 ²⁾ (0.39)	167 <i>(6.57)</i>	> 20%	В
P 1018/1	450 ³⁾ (118.89)	100 <i>(</i> 3.94)	20 ¹⁾ (0.79)	171.5 <i>(</i> 6. <i>75</i>)	> 20%	D

1) External diameter according to DIN 2391.

2) Nominal diameter for bolt.


3) Flow rate with 1 m gradient (when new, acc. to DIN 73 358).

4) With felt gasket.

5) With cork insert.

 $^{*}~$ All figures relate to a particle size of 3-5 μm (c) acc. to ISO/TR 13 353 (1994).

BFU type In-line fuel injection pumps / general preliminary filters

These filter elements are free of metal and particularly environmentally friendly. They are mainly used for in-line injection pumps. For stage filters the BFU type is always used as the first preliminary filter in the flow direction.

MANN-FILTER	Nominal flow rate [l/h]	Dimensions i	Separation efficiency *		
	[gph]	d ₁	d ₂	h	
BFU 707	90 (23.78)	13 <i>(</i> 0.5 <i>1</i>)	59 <i>(2.32)</i>	115 <i>(4.53)</i>	> 10%
BFU 811	150 <i>(</i> 39.63)	13 <i>(</i> 0.5 <i>1</i>)	85 <i>(3.35)</i>	145 <i>(</i> 5. <i>71)</i>	> 10%
BFU 900	150 <i>(</i> 39.63)	13 <i>(</i> 0.51)	85 <i>(</i> 3.35)	145 <i>(</i> 5. <i>71)</i>	> 10%

 $^{*}~$ All figures relate to a particle size of 3-5 μm (c) acc. to ISO/TR 13 353 (1994).

MANN+HUMMEL Gap-type filters

MANN+HUMMEL Gap-type filters

Plate gap-type filters, wire gap-type filters and gap-type tube filters are suitable for the filtration of highly contaminated high and low viscous media such as fuel, lube oils, paints, polyol, isocyanate, cooling lubricants, etc. They are used in nearly all industrial fields, including:

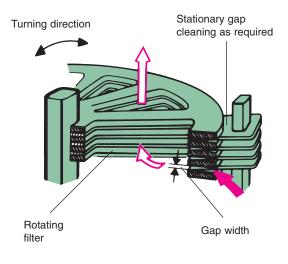
- Steam engines and hydromotors
- Pumps
- Hydraulic systemsMachine tools
- Machine tool
 Gearboxes
- Gearboxes
- Medium to large-sized combustion enginesFood industry
- Cleaning of water and liquids for chemical processes, etc.

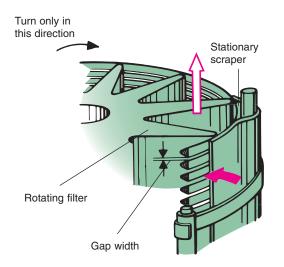
NA CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESCRIPTION O

MANN+HUMMEL gap-type filters can be cleaned during operation, are easy to maintain and are characterised by a very long service life.

Gap-type filters are used in full flows and partial flows. The fluid passes through the filter inserts from the outside to the inside. Various gap widths define the filter fineness. MANN+HUMMEL gaptype filters can also be combined with MANN+HUMMEL in-line filters (highly efficient fine filters) to make multistage filters. You can find in-line filters for oil and fuel respectively on pages 15 and 63.

The filter housing is made of carbon steel, grey cast iron, cast aluminium or nickel chromium steel. Special types are available on request.

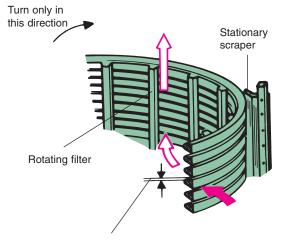

Different gap-type filter designs


Plate gap-type filters for gap widths $\ge 0.1 \text{ mm}$

The plate gap-type filter insert consists of ring-shaped steel discs piled up on a central pin. The gap width between the discs is determined by spacers between the discs. A stationary gap cleaner runs through each gap. As the liquid flows between the discs, dirt particles in the

Page 82

liquid are deposited on the surfaces of the gap. When the handle of the filter insert is turned the dirt particles gather on the row of gap cleaners and sink to the sludge collection chamber where the sludge is discharged by opening a ball valve.



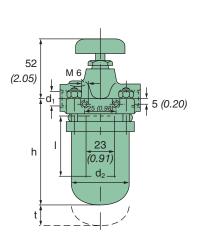
Wire gap-type filters for gap widths ≥ 0.03 mm

The wire gap-type insert consists of a non-rusting, high tensile steel wire wound in a spiral around an aluminium frame. The exact position of the steel wire on the frame provides for equal gaps. As the liquid to be filtered flows through the insert dirt par-

Page 84

ticles are deposited in the gaps. When the handle of the filter insert is turned the dirt particles are scraped by a stationary cleaner and sink to the sludge collection chamber where the sludge is discharged by opening a ball valve.

Gap-type tube filters for gap widths ≥ 0.03 mm


The gap-type tube filter insert consists of a wire wound around longitudinal rods welded together at every crossing point. The longitudinal rods and wire are made of nonrusting, high tensile steel. The exact position of the steel wire on the longitudinal rods provides for equal gaps.

Page 85

As the liquid to be filtered flows through the filter insert the dirt particles are deposited in the gaps. When the handle on the filter insert is turned, the dirt particles are removed by a stationary scraper and fall down into the sludge collection chamber. The sludge is discharged by opening a ball valve.

Gap width

Plate gap-type filters Operating pressure: 10/40 bar – Highly viscous liquids

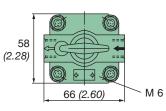
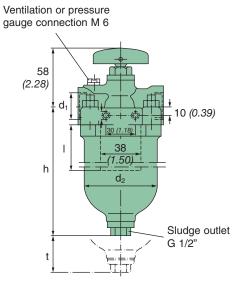
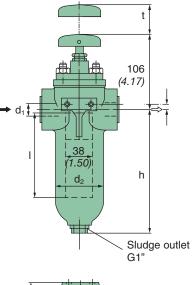




Fig. 1 Filter bowl removable from below

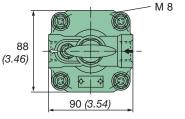
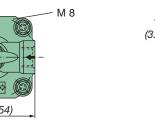



Fig. 2 Filter bowl removable

from below

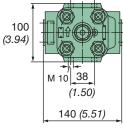
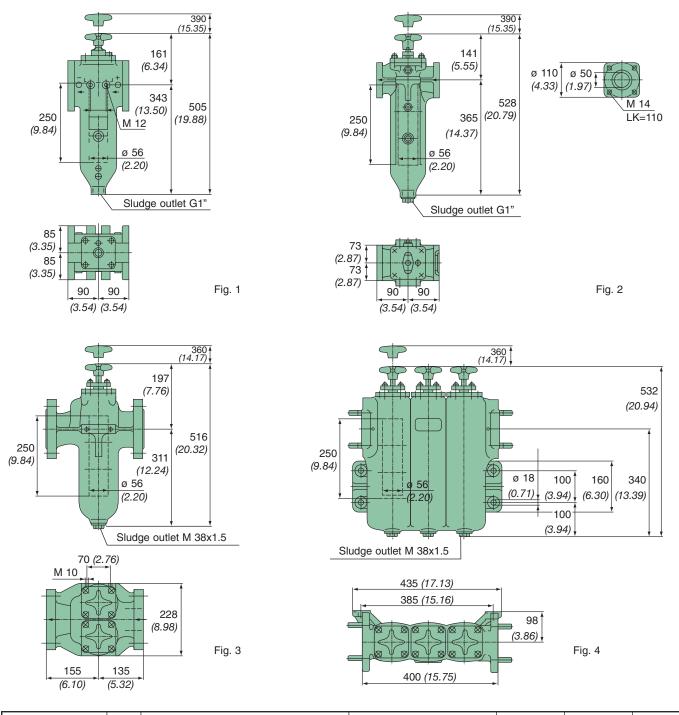
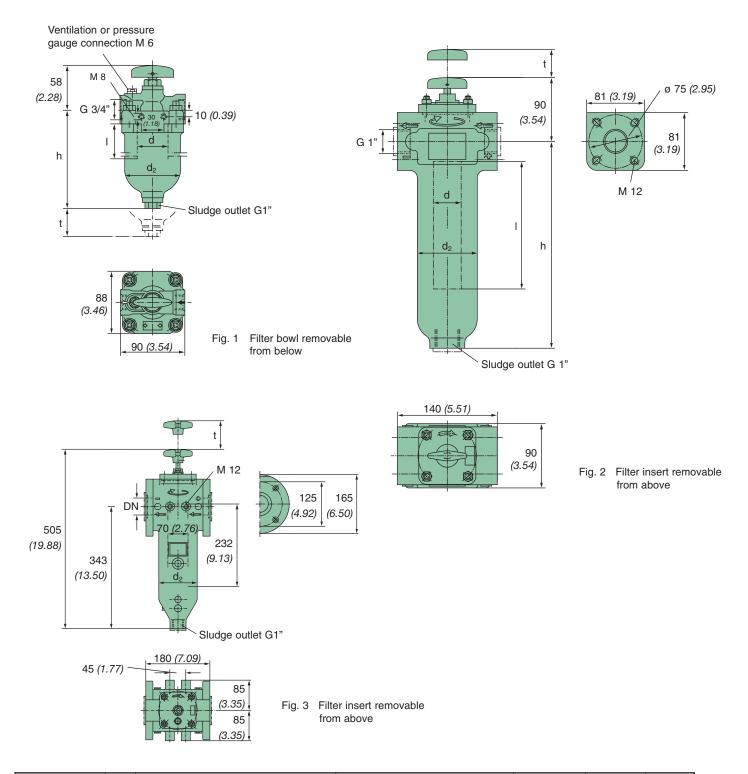
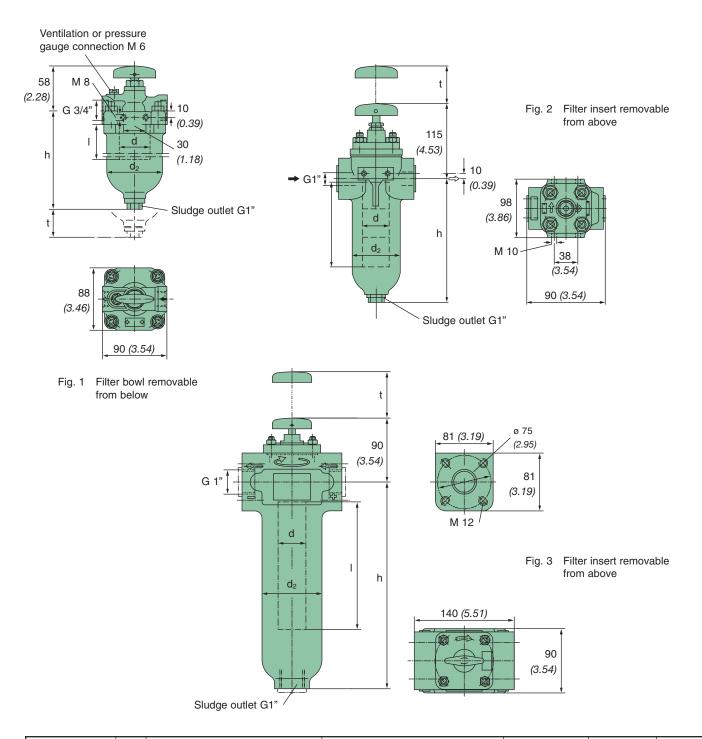



Fig. 3 Filter insert removable from above

	Part no.	Fig.	Nominal flow with ga	p width		Dimensions in mm (Dimensions in inches)					Housing material	Weight approx.
			100 μm x = 3	200 μm x = 5	d ₁	d ₂	h		t	pressure [bar]		[kg]
51	204 6X 021	1	450 (118.89)	-	M 14x1.5	47 (1.85)	75 <i>(2.95)</i>	32 (1.26)	50 (1.97)	10	Spheroidal graph- ite cast iron/steel	1.0
51	207 6X 021	1	900 (237.78)	-	M 14x1.5	47 (1.85)	125 <i>(4.92)</i>	70 (2.76)	85 <i>(3.35)</i>	10	Spheroidal graph- ite cast iron/steel	1.0
51	305 6X 041	2	1400 <i>(</i> 369.88)	3500 (924.70)	M 22x1.5	77 (3.03)	142 <i>(</i> 5.59)	50 (1.97)	90 <i>(3.54)</i>	40	Spheroidal graph- ite cast iron/steel	3.0
51	305 6X 051	2	1400 <i>(</i> 369.88)	3500 (924.70)	G 1/2"	77 (3.03)	142 <i>(</i> 5.59)	50 (1.97)	90 <i>(3.54)</i>	40	Spheroidal graph- ite cast iron/steel	3.0
51	305 6X 061	2	1400 <i>(</i> 369.88)	4000 (1056.80)	G 3/4"	77 (3.03)	142 <i>(</i> 5.59)	50 (1.97)	90 <i>(3.54)</i>	40	Spheroidal graph- ite cast iron/steel	3.0
51	310 6X 041	2	2600 (686.92)	3500 (924.70)	M 22x1.5	77 (3.03)	192 <i>(7.56)</i>	95 <i>(3.74)</i>	140 <i>(</i> 5.51)	40	Spheroidal graph- ite cast iron/steel	3.0
51	310 6X 051	2	2600 (686.92)	3500 (924.70)	G 1/2"	77 (3.03)	192 <i>(7.56)</i>	95 <i>(3.74)</i>	140 <i>(</i> 5.51)	40	Spheroidal graph- ite cast iron/steel	3.0
51	310 6X 071	2	2600 (686.92)	4500 (1188.90)	G 3/4"	77 (3.03)	192 <i>(7.56)</i>	95 <i>(3.74)</i>	140 <i>(5.51)</i>	40	Spheroidal graph- ite cast iron/steel	3.0
51	310 7X 101	3	2600 (686.92)	5000 (1321)	G 1"	78 <i>(3.07)</i>	180 <i>(7.09)</i>	95 <i>(3.74)</i>	180 <i>(7.09)</i>	10	Spheroidal graph- ite cast iron	6.0
51	318 7X 101	3	5000 (1321)	5000 (1321)	G 1"	77 (3.03)	295 (11.61)	180 <i>(7.09)</i>	280 (11.02)	10	Spheroidal graph- ite cast iron	8.0


Plate gap-type filters Operating pressure: 16/40 bar – Highly viscous liquids

Part no.	Fig.		rate [l/h] <i>[gph]</i> p width 200 μm x = 5	Connecti DN	on flange	Permissible operating pressure [bar]	Housing material	Weight approx. [kg]
51 525 7X 784	1	12000 (3170.4)	15000 <i>(</i> 3963)	50	40	40	Aluminium	10
51 525 7X 104	2	12000 (3170.4)	15000 (3963)	50	40	40	SG Iron	20
55 550 7X 251	3	24000 (6340.8)	30000 (7926)	65	40	16	SG Iron	50
55 575 7X 221	4	36000 (9511.2)	45000 (11889)	65	40	16	SG Iron	65

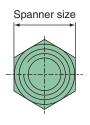

Wire gap-type filters

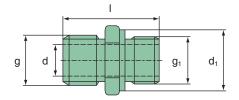
Operating pressure: 40 bar – Fuels and lubricants

Part no.	Fig.	Nominal flow rate [l/h] <i>[gph]</i> with gap width 30 μm 50 μm 100 μm 200 μm					Dimensions in mm (Dimensions in inches)				Permissible operating pressure	Housing material	Weight approx.
		x = 0	x = 1	x = 3	x = 5	d	d ₂	h	I	t	[bar]		[kg]
53 410 6X 061	1	1100 (290.62)	2000 (528.40)	3000 (792.60)	3500 (924.70)	42 (1.65)	77 (3.03)	195 <i>(7.68)</i>	95 <i>(3.74)</i>	140 <i>(</i> 5.51)	40	SG Iron	2.9
53 418 7X 101	2	2100 <i>(</i> 554.82)	3900 (1030.38)	5000 (1321)	5000 (1321)	42 (1.65)	84 <i>(</i> .331)	290 (11.42)	165 <i>(6.50)</i>	260 (10.24)	40	Aluminium alloy	4.2
53 524 7X 191	3	3400 (898.28)	6300 (1664.46)	13500 <i>(</i> 3566.71)	15000 <i>(</i> 3963)	56 <i>(2.20)</i>	108 <i>(4.25)</i>	343 <i>(13.50)</i>	232 (9.13)	360 (14.17)	40	Aluminium alloy	9.2

Gap-type tube filters Operating pressure: 40 bar – Watery and/or aggressive liquids

Part no.	Fig.		flow rate [l ith gap wid 100 μm x = 3		Dimensions in mm <i>(Dimensions in inches)</i> d d ₂ h l t					Permissible operating pressure [bar]	Housing material	Weight approx. [kg]
54 310 6X 061	1	1100 <i>(</i> 290.62)	2000 (528.40)	3000 (792.60)	38 (1.50)	77 (3.03)	194 <i>(7.64)</i>	100 <i>(</i> 3.94)	140 <i>(</i> 5.5 <i>1</i>)	40	SG Iron	3.5
54 310 7X 135	2	1100 <i>(</i> 290.62)	2000 (528.40)	3000 (792.60)	38 (1.50)	84 <i>(3.31)</i>	161 <i>(6.34)</i>	100 <i>(3.94)</i>	200 (7.87)	40	CrNi Steel	7.0
54 310 7X 165	3	1100 <i>(</i> 290.62)	2000 (528.40)	3000 (792.60)	38 (1.50)	84 <i>(3.31)</i>	180 <i>(7.09)</i>	100 <i>(</i> .94)	200 (7.87)	40	Aluminium alloy	4.0
54 318 7X 104	3	1900 <i>(501.98)</i>	3500 (924.70)	5000 (1321)	38 (1.50)	84 <i>(3.31)</i>	380 (14.96)	289 (11.38)	280 (11.02)	40	Aluminium alloy	4.5

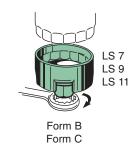


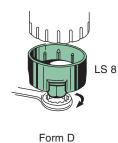


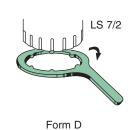
MANN+HUMMEL Accessories for liquid filters

Double connector for MANN+HUMMEL spin-on filters

If the mounting plate for the spin-on filter has an internal thread, you will need a double connector to fit the filter.

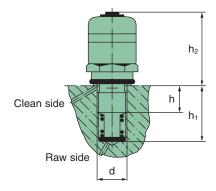





Part no.	Dimensions in mm (Dimensions in inches)											
	g	g ₁	d	d ₁		Spanner size						
21 019 15 111	M 18x1,5	3/4" - 16 UNF	13 <i>(</i> 0.51)	_	35,5 (1.40)	24 (0.94)						
21 020 15 131	M 20x1,5	3/4" - 16 UNF	13 <i>(0.51)</i>	_	30,5 <i>(1.20)</i>	24 (0.94)						
21 024 15 121	M 24x1,5	3/4" - 16 UNF	13 <i>(</i> 0.51)	-	37 (1.46)	27 (1.06)						
21 024 15 131	M 24x1,5	M 20x1,5	14 <i>(</i> 0.55)	-	37 (1.46)	27 (1.06)						
21 025 15 101	M 24x1,5	1"- 12 UNF	18 <i>(</i> 0. <i>71)</i>	-	37 (1.46)	27 (1.06)						
21 030 15 251	M 30x1,5	1 1/8" - 16 UN	22 (0.87)	_	40 (1.57)	32 (1.26)						
21 032 15 211	M 32x1,5	M 30x1,5	18 <i>(</i> 0. <i>71)</i>	-	42 (1.65)	36 (1.42)						
21 039 15 101	M 38x1,5	1 1/2" - 16 UN	30 (1.18)	_	41 (1.61)	46 (1.81)						
21 039 15 171	1 1/2" - 16 UN	M 36x1,5	25 (0.98)	-	42,5 (1.67)	41 (1.61)						

Filter wrench for MANN+HUMMEL spin-on filters

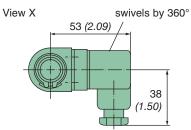
Enables easy removal of a MANN+HUMMEL spin-on filter.


W 7 ... W 8 ... MANN-FILTER W 9 ... W 11 ... D В Form of the spin-on filter С D С Suitable MANN+HUMMEL filter wrench LS 7 LS 7/2 LS 8 LS 9 LS 11

For form A with a wrench profile (see page 9) the tool can be a strong screwdriver or a round bar between 8 and 10 mm thick. The filter wrench for form E (see page 9) can be a standard strap wrench.

MANN+HUMMEL Service indicators for in-line filters and high pressure filters

MANN+HUMMEL service indicators signal the time for maintenance for filter inserts full of dirt particles by the display of a red signal ring in a display. The permissible operating temperature is 120 °C.

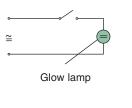

Part no.	Dimension	s in mm <i>(Dii</i>	mensions ir	n inches)	Permissible operating pressure	Switching pressure	
	d h h ₁ h ₂				[bar]	[bar]	
59 020 79 201	M 18x1.5	22 (0.87)	36 (1.42)	46 (1.81)	25	1.0	
59 020 79 202	M 18x1.5	22 (0.87)	36 (1.42)	46 (1.81)	25	1.8	
59 020 79 208	M 18x1.5	22 (0.87)	36 (1.42)	46 (1.81)	25	1.4	
59 020 79 242	M 18x1.5	22 (0.87)	36 (1.42)	46 (1.81)	25	2.2	
59 020 79 212	M 10x1.5	16 <i>(</i> 0.63)	-	44 (1.73)	25	1.8	
59 020 79 315	M 24x2.0	19 <i>(0.75)</i>	44.5 (1.75)	44 (1.73)	400	5.0	

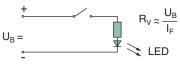
MANN+HUMMEL Service switches for in-line filters and high pressure filters

When the time for maintenance has come an electromagnetic switch actuates a signal (e.g. lamp, buzzer) or a disconnection device.

- Operating temperature: max. 120 °C
- Switching type: the default switching type is listed in the table below (make/ break contact).
 The customer can change the setting by rearranging the contacts.
- Switching capacity: max. 12 W / 18 VA
- Starting current: max. 0.8 A
- Protection class: IP 65
 all-insulated

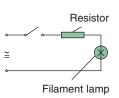
Connection for cable diameter 4.5 up to 7 mm (0.18 up to 0.28 inches)


X changeable 4x 90°
Clean side
Raw side d

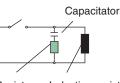

Part no.	Dimensions i				operating pressure	Switching pressure	Contact type	Main application
	d	h	h ₁	h ₂	[bar]	[bar]		
59 010 79 201	M 18x1.5	22 (0.87)	36 (1.42)	62.5 <i>(2.46)</i>	25	1.0	Make contact	Oil
59 010 79 202	M 18x1.5	22 (0.87)	36 (1.42)	62.5 <i>(2.46)</i>	25	1.8	Make contact	Oil
59 010 79 205	M 18x1.5	22 (0.87)	36 (1.42)	62.5 (2.46)	25	1.8	Break contact	Fuel
59 010 79 206	M 18x1.5	22 (0.87)	36 (1.42)	62.5 <i>(2.46)</i>	25	0.8	Break contact	Oil
59 010 79 208	M 18x1.5	22 (0.87)	36 (1.42)	62.5 <i>(2.46)</i>	25	1.4	Make contact	Oil
59 010 79 232	M 18x1.5	22 (0.87)	36 <i>(1.42)</i>	62.5 <i>(2.46)</i>	25	1.8	Make contact	Fuel
59 010 79 241	M 18x1.5	22 (0.87)	36 <i>(1.42)</i>	62.5 <i>(2.46)</i>	25	1.0	Break contact	Fuel
59 010 79 252	M 18x1.5	22 (0.87)	36 <i>(1.42)</i>	62.5 <i>(2.46)</i>	25	2.2	Break contact	Oil
59 010 79 305	M 24x2.0	19 <i>(0.75)</i>	59.5 <i>(2.34)</i>	61 <i>(2.40)</i>	400	5.0	Make contact	Oil
59 010 79 315	M 24x2.0	19 <i>(0.75)</i>	57.5 <i>(2.26)</i>	61 <i>(2.40)</i>	400	5.0	Make contact	Oil
59 010 79 405	M 18x2.0	7.5 <i>(</i> 0.30)	30 (1.18)	62.5 <i>(2.46)</i>	175	5.0	Make contact	Oil

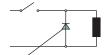
MANN+HUMMEL Service switches for in-line filters and high pressure filters

Instructions for electrical installation of the service switch


The service switch is equipped with a high quality electromagnetic switch (reed switch). In order to achieve a reliable function, please observe the following: 1. For an electrical or optical display we recommend use of a glow lamp or LED. Both can be directly switched without a spark quenching device.

Dimension the R_V so that I_F is approx. 15 ... 20 mA


2. Filament lamps require a very high starting current relative to their load current. The lamp and a series resistor should be dimensioned such that the maximum load of the switch (see rating plate) is not exceeded when switching on. We recommend selecting the series resistor such that the switch has the max. load without consideration of the glow lamp resistance. It is thereby protected against overload but the glow lamp lights up with low voltage.


3. When switching inductive loads voltage peaks can be induced which in some circumstances may cause the service switch to malfunction. For alternating current an RC combination should be connected parallel to the relay or contactor coil and with direct current a freewheeling diode (e.g. diode 1 N 4007) in reverse direction.

When dimensioning the spark quenching device the instructions of the respective contactor or relay should be observed.

In both cases the maximum load for the switch (see rating plate) must not be exceeded.

Resistor Inductive resistance

Freewheeling diode

Technical Annex

Filter glossary

B_x value

The beta value is the ratio of a quantity of particles of a given size of the particle upstream of the filter to the quantity of these particles found downstream from the element. Example: Upstream there are 75 particles of the size 3 µm and downstream there is only one such particle. The filter then has the characteristics $\beta_3 > = 75$. The conversion to separation efficiency is as follows: $\eta = 1 - 1/\beta_x$.

Bursting pressure

The failure of a filter element as fluid flows from the inside to the outside as a result of excessive differential pressure or too high a static pressure.

Bypass valve

The bypass valve ensures the oil flow to the lubrication point, e.g. with a cold-start, thick oil or a clogged filter.

Coalescence

The behaviour of small droplets in fluids whereby varying surface tensions and forces of cohesion cause the droplets combine to form larger droplets. This effect is used in preliminary fuel filters for the separation of water.

Collapse pressure

The failure of the filter through collapsing as the liquid flows from the outside to the inside as a result of excessive differential pressure over the filter.

Deep-bed filters

Dirt particles penetrate the filter medium and retained by the structure of the filter medium. The design of the deep-bed filter allows the highest filter fineness and high dirt holding capacity. Deepbed filters are replaced at the end of the product life. It is usually not possible to clean them.

Differential pressure

In a filter this is the pressure difference between the raw and clean side.

Dirt holding capacity [g]

The dirt holding capacity of a filter or filter element is the mass of the dirt under test conditions which is added until the agreed end of the test.

Dirt load

The amount of dirt particles the filter is confronted with.

Filter cake

This is formed by separated particles which are deposited on the surface of the element. The filter cake has the effect of an additional filter, but also increases the flow resistance.

Filter dimensioning

This mainly depends on the factors of volume flow, filter fineness, amount of dirt particles and the required service life of the filter.

Filter element

This is the component without the housing which is responsible for the actual filtration process.

Full flow

The complete oil volume flows through the filter.

Gap-type filters Surface-type filters

Filters which separate dirt particles using a filter element with a defined gap width, e.g. through layers of plates or discs or wound wire

Graded medium

The description of a singlelayer fuel filter medium with a high initial separation efficiency and high dirt holding capacity. The medium is more open on the inflow side than on the outflow side.

In-line filters

Filters fitted in pipe or hose lines.

Micron specifications

In connection with fuel filters common reference is made to µm specifications without reference to a test standard. In this catalogue all the separation efficiencies are accor-

> 0 10 10 10 11 900000 0.0.0.0.000 00000000 00000000000000

ding to ISO. In order to compare the MANN+HUMMEL media with the micron specifications commonly used elsewhere, please use the following table:

MANN+HUMMEL medium	Application	Filter fineness acc. to common micron references
Multigrade PF	Preliminary filter	10 µm
Multigrade PFO	Preliminary filter	30 µm
Graded medium	Main filter	5 µm
Multigrade HC	Main filter	5 µm
Multigrade HE	Main filter	2 µm
Multigrade HE+	Main filter	1 µm

Filter glossary

Medium

Material used to carry out the filtration.

Multigrade

Description of a high performance, multi-layer medium for a fuel filter.

Multipass test for oil filters Defined in ISO 4548-12 with calibration acc. to ISO 16 889. A defined amount of particles are added until a defined differential pressure over the filter element is reached. This results in the separation efficiency characteristic over time, the ß value and the filter service life.

Nominal flow rate [l/min] The nominal flow rate relates closely to the geometric dimensioning data of the filter (nominal connection diameter, filter fineness) and the physical characteristics of the liquid to be filtered (density, viscosita)

Nominal pressure [bar/mbar/kPa] The filter is dimensioned to handle this pressure.

Opening pressure [bar, kPa] The pressure difference when the bypass valve is opened, characterised by a defined volume flow.

Operating pressure

work at this operating

The filter is dimensioned to

A partial flow is diverted bet-

ween the pump and lubricati-

on points and then immedia-

tely directed to the oil sump

via a partial-flow filter. The

[bar, mbar, kPa]

pressure.

Partial flow

Particle separation efficiency for a fuel filter

Specifications for the initial separation efficiency are according to ISO 13 353.

PreLine

The MANN+HUMMEL brand name for a preliminary fuel filter with water separation. The filter is equipped with the patented multigrade medium.

Separation efficiency [%]

Ratio of the dirt particles retained by the filter to the dirt particles present.

Separation efficiency, absolute

In one flow through the filter 99% of the particles of a given size are separated. Example: 15 μ m absolute. Particles of the size 15 μ m are 99% separated in one flow through the filter.

Separation efficiency, fractional [%] The separation efficiency for a given particle size. Determined by a multipass test.

FOF

Separation efficiency, nominal

In one flow through the filter 50% of the particles of a given size are separated. Example: 15 μ m nominal. Particles of the size 15 μ m are 50% separated in one flow through the filter.

Spin-on filters

Filters where maintenance simply requires replacing the complete filter with integrated filter element.

Surface-type filters

Dirt particles collect on the surface of the filter element. The formation of a filter cake enables the additional separation of particles smaller than the pore size of the filter element. It is usually possible to clean surface-type filters.

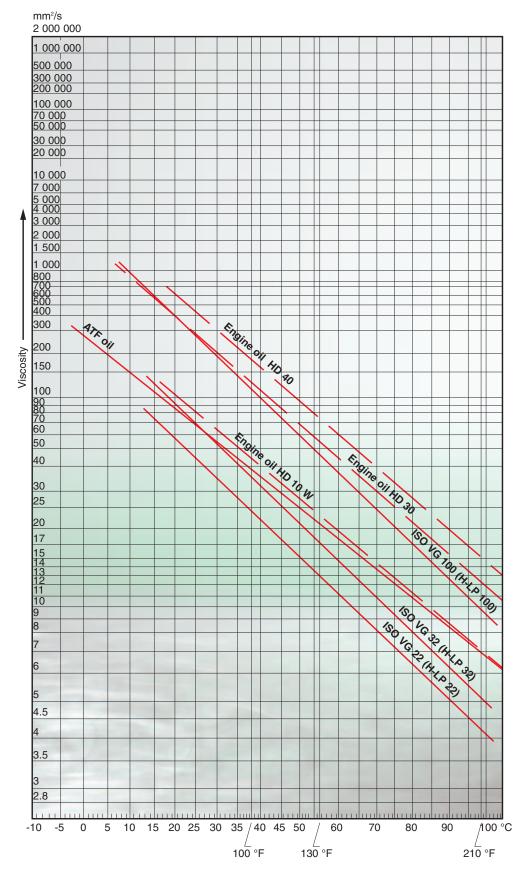
Viscosity

The dynamic viscosity is a measurement of the thickness of the liquid medium to be filtered. The kinematic viscosity is the ratio of the dynamic viscosity of the medium to its density.

Water separation efficiency for fuel filter

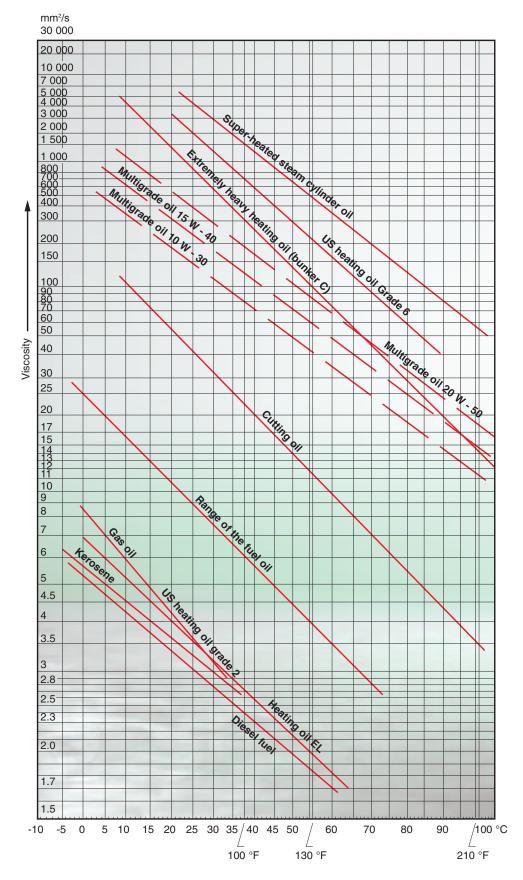
Specifications for water separation are according to ISO 4020.

in an


metric dipartial-flow filter is considerably finer than a full-flow filter and primarily reduces the soot particle content in the lube oil.

upply im an office of the second seco

clos me (no filte cal to b ty).


Viscosity/temperature characteristics

Examples for commonly available single grade engine oils, hydraulic oils and ATF oils

Viscosity/temperature characteristics

Examples for commonly available multigrade engine oils, cutting oils and heating oils

Part no.	Name	Page	Part no.	Name	Page
21 019 15 111	Double connector for spin-on filters	88	62 501 52 281	Strainer filter	43
21 020 15 131	Double connector for spin-on filters		62 501 53 281	Strainer filter	43
21 024 15 121	Double connector for spin-on filters		62 501 53 291	Strainer filter	43
21 024 15 131	Double connector for spin-on filters		62 501 57 362	Strainer filter	44
21 025 15 101	Double connector for spin-on filters		62 602 53 251	Strainer filter	43
21 030 15 251	Double connector for spin-on filters		62 602 53 261	Strainer filter	43
21 032 15 211	Double connector for spin-on filters		66 400 62 252	In-line fuel filter	70
21 039 15 101	Double connector for spin-on filters	88	66 403 62 182	In-line fuel filter	70
21 039 15 171	Double connector for spin-on filters	88	66 404 62 242	In-line fuel filter	70
51 204 6X 021	Gap-type filter	82	66 405 62 112	In-line fuel filter	70
51 207 6X 021	Gap-type filter	82	66 511 82 110	In-line fuel filter	71
51 305 6X 041	Gap-type filter	82	66 511 82 120	In-line fuel filter	71
51 305 6X 051	Gap-type filter	82	66 511 82 130	In-line fuel filter	71
51 305 6X 061	Gap-type filter	82	66 604 62 251	PreLine 270	69
51 310 6X 041	Gap-type filter	82	66 604 62 253	PreLine 270	69
51 310 6X 051	Gap-type filter	82	66 604 62 255	PreLine 270	69
51 310 6X 071	Gap-type filter	82	66 604 62 257	PreLine 270	69
51 310 7X 101	Gap-type filter	82	66 604 62 261	PreLine 270	69
51 318 7X 101	Gap-type filter	82	66 604 62 263	PreLine 270	69
51 525 7X 104	Gap-type filter	83	66 604 62 265	PreLine 270	69
51 525 7X 784	Gap-type filter	83	66 604 62 267	PreLine 270	69
53 410 6X 061	Gap-type filter	84	66 606 62 251	PreLine 420	69
53 418 7X 101	Gap-type filter	84	66 606 62 253	PreLine 420	69
53 524 7X 191	Gap-type filter	84	66 606 62 255	PreLine 420	69
54 310 6X 061	Gap-type filter	85	66 606 62 257	PreLine 420	69
54 310 7X 135	Gap-type filter	85	66 606 62 261	PreLine 420	69
54 310 7X 165	Gap-type filter	85	66 606 62 263	PreLine 420	69
54 318 7X 104	Gap-type filter	85	66 606 62 265	PreLine 420	69
55 550 7X 251	Gap-type filter	83	66 606 62 267	PreLine 420	69
55 575 7X 221	Gap-type filter	83	66 612 82 121	In-line fuel filter	73
59 010 79 201	Service switch	90	66 612 82 131	In-line fuel filter	73
59 010 79 202	Service switch	90	66 612 82 141	In-line fuel filter	73
59 010 79 205	Service switch	90	66 612 82 151	In-line fuel filter	73
59 010 79 206	Service switch	90	66 619 82 100	In-line fuel filter	72
59 010 79 208	Service switch	90	66 619 82 110	In-line fuel filter	72
59 010 79 232	Service switch	90	66 619 82 120	In-line fuel filter	72
59 010 79 241	Service switch	90	66 619 82 130	In-line fuel filter	72
59 010 79 252	Service switch	90	67 403 62 246	In-line oil filter	25
59 010 79 305	Service switch	90	67 502 62 026	In-line oil filter	20
59 010 79 315	Service switch	90	67 502 62 106	In-line oil filter	20
59 010 79 405	Service switch	90	67 502 62 206	In-line oil filter	25
59 020 79 201	Service indicator	89	67 502 62 216	In-line oil filter	25
59 020 79 202	Service indicator	89	67 502 62 226	In-line oil filter	21
59 020 79 208	Service indicator	89	67 502 62 236	In-line oil filter	21
59 020 79 212	Service indicator	89	67 502 62 246	In-line oil filter	25
59 020 79 242	Service indicator	89	67 502 62 256	In-line oil filter	21
59 020 79 315	Service indicator	89	67 503 62 026	In-line oil filter	20
61 402 61 032	Strainer filter	44	67 503 62 266	In-line oil filter	21
61 402 62 031	Strainer filter	44	67 503 62 276	In-line oil filter	21
62 300 52 541	Strainer filter	43	67 503 62 306	In-line oil filter	21
62 300 52 551	Strainer filter	43	67 504 62 126	In-line oil filter	20
62 300 52 591	Strainer filter	44	67 504 62 406	In-line oil filter	25
62 300 53 285	Strainer filter	44	67 504 62 416	In-line oil filter	25
62 300 53 571	Strainer filter	43	67 504 62 426	In-line oil filter	25
62 301 52 171	Strainer filter	44	67 504 62 436	In-line oil filter	25
62 301 62 111	Strainer filter	44	67 504 62 446	In-line oil filter	25
62 301 63 121	Strainer filter	44	67 504 62 456	In-line oil filter	25
62 500 53 411	Strainer filter	43	67 506 62 646	In-line oil filter	25

Part no.	Name	Page	Part no.	Name	Page
67 506 62 656	In-line oil filter	25	H 11 171	Oil filter element	34
67 506 62 666	In-line oil filter	21	H 12 107/1	Oil filter element	34
67 506 62 676	In-line oil filter	21	H 12 110/2 X	Oil filter element	35
67 506 62 696	In-line oil filter	25	H 12 113	Oil filter element	35
67 506 62 706	In-line oil filter	21	H 12 225	Oil filter element	35
67 506 62 756	In-line oil filter	25	H 1273	Oil filter element	34
67 506 82 136	In-line oil filter	28	H 1275 X	Oil filter element	34
67 506 82 166	In-line oil filter	28	H 1282 X	Oil filter element	34
67 506 82 176	In-line oil filter	28	H 1290/1	Oil filter element	34
67 512 62 106	In-line oil filter	23	H 13 104	Oil filter element	35
67 512 62 126	In-line oil filter	23	H 15 111/2	Oil filter element	35
67 512 62 136	In-line oil filter	23	H 15 206/1	Oil filter element	35
67 512 62 156	In-line oil filter	26	H 15 222/2	Oil filter element	35
67 512 62 166	In-line oil filter	26	H 15 230/1	Oil filter element	35
67 512 62 176	In-line oil filter	26	H 15 250/1	Oil filter element	35
67 612 62 146	In-line oil filter	22	H 20 211	Oil filter element	35
67 612 62 166	In-line oil filter	22	H 20 440	Oil filter element	35
67 612 62 176	In-line oil filter	22	H 25 669/1	Oil filter element	35
67 612 82 116	In-line oil filter	28	H 28 545	Oil filter element	35
67 612 82 146	In-line oil filter	28	H 31/1	Oil filter element	33
67 625 62 106	In-line oil filter	23	H 31/2	Oil filter element	33
67 625 62 116	In-line oil filter	23	H 42	Oil filter element	33
67 625 62 126	In-line oil filter	23	H 53	Oil filter element	33
67 708 62 146	In-line oil filter	25	H 53/3	Oil filter element	33
67 708 62 156	In-line oil filter	25	H 601	Oil filter element	33
67 708 62 166	In-line oil filter	25	H 601/4	Oil filter element	33
67 716 62 216	In-line oil filter	25	H 614/3	Oil filter element	33
67 716 62 226	In-line oil filter	25	H 616/1	Oil filter element	33
67 716 62 236	In-line oil filter	25	H 617 N	Oil filter element	33
67 730 62 256	In-line oil filter	26	H 68/1	Oil filter element	33
67 730 62 266	In-line oil filter	26	H 715/1 X	Oil filter element	33
67 730 62 296	In-line oil filter	26	H 724/1	Oil filter element	34
67 730 82 106	In-line oil filter	29	H 822/1 X	Oil filter element	34
67 730 82 116	In-line oil filter	29	H 829	Oil filter element	34
67 730 82 126	In-line oil filter	29	H 925/2	Oil filter element	34
67 750 62 106	In-line oil filter	27	H 932/2	Oil filter element	34
67 750 62 116	In-line oil filter	27	HD 1060	Oil filter element	38
67 750 62 126	In-line oil filter	27	HD 1066	Oil filter element	38
68 991 18 701	Centrifuge	53	HD 12 112	Oil filter element	38
68 991 18 801	Centrifuge	53	HD 45	Oil filter element	36
68 991 18 901	Centrifuge	53	HD 46	Oil filter element	36
68 991 19 001	Centrifuge	53	HD 46/1	Oil filter element	36
68 991 19 201	Centrifuge	53	HD 46/2	Oil filter element	36
68 991 19 301	Centrifuge	53	HD 46/3	Oil filter element	36
68 991 19 701	Centrifuge	51	HD 513	Oil filter element	37
68 991 19 801	Centrifuge	51	HD 513/3	Oil filter element	37
68 991 19 901	Centrifuge	51	HD 518	Oil filter element	37
68 991 20 001	Centrifuge	51	HD 56	Oil filter element	36
68 991 34 401	Centrifuge	52	HD 57/2	Oil filter element	36
68 991 34 701	Centrifuge	52	HD 57/3	Oil filter element	36
68 991 36 801	Centrifuge	52	HD 58	Oil filter element	36
68 991 38 801	Centrifuge	52	HD 610	Oil filter element	37
68 991 39 301	Centrifuge	50	HD 610/1	Oil filter element	37
68 991 42 101	Centrifuge	49	HD 610/2	Oil filter element	37
BFU 707	Fuel filter element	78	HD 613	Oil filter element	37
BFU 811	Fuel filter element	78	HD 613/1	Oil filter element	37
BFU 900	Fuel filter element	78	HD 613/2	Oil filter element	37
H 1081	Oil filter element	34	HD 620	Oil filter element	37
11 1001		04			57

Part no.	Name	Page	Part no.	Name	Page
HD 65	Oil filter element	36	W 712/20	Spin-on oil filter	10
HD 65/1	Oil filter element	36	W 712/4	Spin-on oil filter	10
HD 65/2	Oil filter element	36	W 712/52	Spin-on oil filter	10
HD 68	Oil filter element	36	W 712/65	Spin-on oil filter	12
HD 69	Oil filter element	37	W 719/14	Spin-on oil filter	10
HD 751	Oil filter element	37	W 719/30	Spin-on oil filter	10
HD 829	Oil filter element	37	W 719/37	Spin-on oil filter	12
HD 929	Oil filter element	38	W 920	Spin-on oil filter	10
HD 929/3	Oil filter element	38	W 920/40	Spin-on oil filter	12
HD 938	Oil filter element	38	W 920/51	Spin-on oil filter	12
HD 938/1	Oil filter element	38	W 920/7	Spin-on oil filter	10
HD 938/2	Oil filter element	38	W 930	Spin-on oil filter	10
HD 952	Oil filter element	38	W 930/21	Spin-on oil filter	10
HD 952/2	Oil filter element	38	W 930/35	Spin-on oil filter	12
HD 958	Oil filter element	38	W 940	Spin-on oil filter	10
HD 958/1	Oil filter element	38	W 940/51	Spin-on oil filter	11
HD 958/2	Oil filter element	38	W 940/55	Spin-on oil filter	12
HU 12 140 X	Oil filter element	39	W 950	Spin-on oil filter	11
HU 718/1 K	Oil filter element	39	W 950/17	Spin-on oil filter	11
HU 726/2 X	Oil filter element	39	W 950/24	Spin-on oil filter	12
HU 921 X	Oil filter element	39	W 962/14	Spin-on oil filter	12
HU 931/5 X	Oil filter element	39	W 962/18	Spin-on oil filter	12
HU 932/4 X	Oil filter element	39	W 962/2	Spin-on oil filter	11
HU 945/2 X	Oil filter element	39	W 962/6	Spin-on oil filter	11
HU 947/1 X	Oil filter element	39	WD 13 145	Spin-on oil filter	13
HU 951 X	Oil filter element	39	WD 13 145/4	Spin-on oil filter	13
P 1018/1	Fuel filter element	77	WD 13 145/8	Spin-on oil filter	12
P 46/1	Fuel filter element	77	WD 13 145/10	Spin-on oil filter	12
P 609	Fuel filter element	77	WD 13 145/14	Spin-on oil filter	12
P 707	Fuel filter element	77	WD 1374	Spin-on oil filter	13
P 715	Fuel filter element	77	WD 724/6	Spin-on oil filter	13
P 725	Fuel filter element	77	WD 920	Spin-on oil filter	13
P 78	Fuel filter element	77	WD 940	Spin-on oil filter	13
P 810	Fuel filter element	77	WD 940/2	Spin-on oil filter	13
P 811	Fuel filter element	77	WD 950	Spin-on oil filter	13
P 824	Fuel filter element	77	WD 950/2	Spin-on oil filter	13
P 825	Fuel filter element	77	WD 962	Spin-on oil filter	13
P 921/2	Fuel filter element	77	WD 962/9	Spin-on oil filter	13
P 934	Fuel filter element	77	WD 962/21	Spin-on oil filter	12
PF 1025	Oil filter element	40	WDK 11 102/1	Spin-on fuel filter	61
PF 1050/1	Oil filter element	40	WDK 11 102/3	Spin-on fuel filter	61
PF 1055/1	Oil filter element	40	WDK 11 102/6	Spin-on fuel filter	61
PF 1155	Oil filter element	40	WDK 11 102/7	Spin-on fuel filter	61
PF 1190	Oil filter element	40	WDK 719	Spin-on fuel filter	61
PF 1552	Oil filter element	40	WDK 725	Spin-on fuel filter	61
PF 815	Oil filter element	40	WDK 925	Spin-on fuel filter	61
PF 915	Oil filter element	40	WDK 962/10	Spin-on fuel filter	60
PF 926	Oil filter element	40	WDK 962/12	Spin-on fuel filter	61
W 11 102	Spin-on oil filter	11	WDK 962/14	Spin-on fuel filter	61
W 11 102	Spin-on oil filter	12	WDK 962/15	Spin-on fuel filter	61
W 11 102/4	Spin-on oil filter	11	WDK 962/16	Spin-on fuel filter	61
W 1160	Spin-on oil filter	11	WH 945/1	Spin-on oil filter	13
W 1170	Spin-on oil filter	12	WH 945/2	Spin-on oil filter	13
W 13 145/1	Spin-on oil filter	11	WH 980	Spin-on oil filter	13
W 13 145/6	Spin-on oil filter	11	WH 980/1	Spin-on oil filter	13
W 1374/2	Spin-on oil filter	11	WK 21	In-line fuel filter	74
W 1374/2 W 1374/4	Spin-on oil filter	11	WK 21/2	In-line fuel filter	74 74
W 1374/6	Spin-on oil filter	11	WK 31/2	In-line fuel filter	74 74
VV 13/4/0		11 '	WIX 01/2		74

Part no.	Name	Page
WK 31/4	In-line fuel filter	74
WK 31/5	In-line fuel filter	74
WK 32	In-line fuel filter	74
WK 43/1	In-line fuel filter	74
WK 712/2	Spin-on fuel filter	60
WK 723	Spin-on fuel filter	60
WK 731	Spin-on fuel filter	60
WK 731/1	Spin-on fuel filter	60
WK 842	Spin-on fuel filter	60
WK 842/6	Spin-on fuel filter	60
WK 940/2	Spin-on fuel filter	61
WK 950/3	Spin-on fuel filter	60
WK 962/4	Spin-on fuel filter	60
WK 962/7	Spin-on fuel filter	61
WP 11 102	Spin-on oil filter	14
WP 1144	Spin-on oil filter	14
WP 1169	Spin-on oil filter	14
WP 1170	Spin-on oil filter	14
WP 914/80	Spin-on oil filter	14
WP 928/82	Spin-on oil filter	14

Conversion table

Flow rates

10 l/mi	n =	2.64	gpm
20 l/mi	n =	5.28	gpm
30 l/mi	n =	7.93	gpm
40 l/mi	n =	10.57	gpm
50 l/mi	n =	13.21	gpm
60 l/mi	n =	15.85	gpm
70 l/mi	n =	18.49	gpm
80 l/mi	n =	21.14	gpm
90 l/mi	n =	23.78	gpm
100 l/mi	n =	26.42	gpm
150 l/mi	n =	39.63	gpm
200 l/mi	n =	52.84	gpm
250 l/mi	n =	66.05	gpm
300 l/mi	n =	79.26	gpm
350 l/mi	n =	92.47	gpm
400 l/mi	n =	105.68	gpm
450 l/mi	n =	118.89	gpm
500 l/mi	n =	132.10	gpm
600 l/mi	n =	158.52	gpm
700 l/mi	n =	184.94	gpm
800 l/mi	n =		÷.
900 l/mi	n =		
1000 l/mi	n =	264.20	gpm

100 l/h	=	26.42 gph
110 l/h	=	29.06 gph
120 l/h	=	31.70 gph
130 l/h	=	34.35 gph
140 l/h	=	36.99 gph
150 l/h	=	39.63 gph
160 l/h	=	42.27 gph
170 l/h	=	44.91 gph
180 l/h	=	47.56 gph
190 l/h	=	50.20 gph
200 l/h	=	52.84 gph
300 l/h	=	79.26 gph
400 l/h	=	105.68 gph
500 l/h	=	132.10 gph
600 l/h	=	158.52 gph
700 l/h	=	184.94 gph
800 l/h	=	211.36 gph
900 l/h	=	237.78 gph
1000 l/h	=	264.20 gph

Pressure

0.1 bar	=	1.45 psi
0.12 bar	=	1.74 psi
0.5 bar	=	7.25 psi
1 bar	=	14.5 psi
2 bar	=	29 psi
2.5 bar	=	36.25 psi
3 bar	=	43.5 psi
5 bar	=	72.5 psi
10 bar	=	145 psi
14 bar	=	203 psi
20 bar	=	290 psi
25 bar	=	362.5 psi
30 bar	=	435 psi
35 bar	=	507.5 psi
40 bar	=	580 psi
100 bar	=	1450 psi
200 bar	=	2900 psi
300 bar	=	4350 psi
400 bar	=	5800 psi

Volume

100 cm ³	=	6.102 inch ³
200 cm ³	=	12.204 inch ³
300 cm ³	=	18.306 inch ³
400 cm ³	=	24.408 inch ³
500 cm ³	=	30.51 inch ³
600 cm ³	=	36.612 inch ³
700 cm ³	=	42.714 inch ³
800 cm ³	=	48.816 inch ³
900 cm ³	=	54.918 inch ³
1000 cm ³	=	61.02 inch ³
5000 cm ³	=	305.1 inch ³
10000 cm ³	=	610.2 inch ³

Length

10 mm	=	0.39 inch
20 mm	=	0.79 inch
30 mm	=	1.18 inch
40 mm	=	1.57 inch
50 mm	=	1.97 inch
60 mm	=	2.36 inch
70 mm	=	2.76 inch
80 mm	=	3.15 inch
90 mm	=	3.54 inch
100 mm	=	3.94 inch
150 mm	=	5.91 inch
200 mm	=	7.87 inch
250 mm	=	9.84 inch
300 mm	=	11.81 inch
350 mm	=	13.78 inch
400 mm	=	15.75 inch
450 mm	=	17.72 inch
500 mm	=	19.69 inch

Temperature

-30 °C	=	-22.0 °F
-10 °C	=	14.0 °F
0 °C	=	32.0 °F
10 °C	=	50.0 °F
30 °C	=	86.0 °F
50 °C	=	122.0 °F
80 °C	=	176.0 °F
100 °C	=	212.0 °F
120 °C	=	248.0 °F

Selection from the MANN+HUMMEL industrial filters catalogue program

ProVent

For crankcase ventilation

Catalogue order no. 19 944 10 100 de 19 944 10 101 en 19 944 10 102 fr Further languages available on request.

Air cleaners

CompacPlus Europiclon Vacuum filter

Catalogue order no. 19 941 10 100 de 19 941 10 101 en 19 941 10 102 fr Further languages available on request.

Air/oil separators for compressors and vacuum pumps

Air/oil separators Air/oil boxes

Catalogue order no. 19 943 00 100 de 19 943 00 101 en 19 943 00 102 fr Further languages available on request.

MANN-FILTER

Filter elements in OEM quality for construction and agricultural machines:

- Air filters
- Oil filters
- Fuel filters
- Hydraulic filters
- Cabin filters

Catalogue order no. 19 939 24 600 multilingual

MANN+HUMMEL Group

The MANN+HUMMEL Group is an international company with its headquarters in Ludwigsburg, Germany. The group employs more than 10,000 people worldwide at more than 41 locations.

The company develops, produces and sells technically complex components and systems for the automotive industry and many other fields. A key area is high quality filtration products for vehicles, engines and industrial applications. The OEM business with global market leaders and producers of vehicles, machines and installations defines the quality and performance of the products. Filters for the international aftermarket are sold under a variety of international brands as well as under the MANN-FILTER brand.

MANN+HUMMEL Industrial Filters

The Industrial Filters Business Unit has its headquarters in Speyer, Germany. The business unit is specialized in meeting the special requirements of off-highway vehicles and engine applications, compressed air and vacuum technology, mechanical engineering and plant construction.

MANN+HUMMEL Industrial Filters offers high performance for these fields and other fields which have a requirement for the filtration and separation of air, gas and liquids.

MANN+HUMMEL GMBH, Business Unit Industrial Filters Telephone +49 (62 32) 53-80, Fax +49 (62 32) 53-88 99 E-Mail: if.info@mann-hummel.com, Internet: www.mann-hummel.com