Basin Electric Post Combustion CO₂ Capture Demonstration Project McIlvaine Hot Topic June 25, 2009

Lyle Witham

Basin Electric Power Cooperative MEMBER SYSTEMS

serve 2.6 million consumers

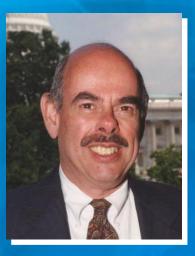
Basin Power Supply Facilities

• 2817 MW

- Coal	2278 MW	80.6%
– Oil	104 MW	3.7%
– Gas	277 MW	9.8%
- Wind	135 IVIVV	4.8%
- Recycled Heat	33 IVI VV	~1.2%

Renewable

Key Questions


- Federal legislation
- EPA rulemaking
- CCS technology
- Economics (cost per ton)
- Geological sequestration
- EOR as bridge

Key Elements in Legislation

- Incentives for technology development
- Credit for early adopters
- Time to develop the technology
- Price ceiling for carbon (safety valve)
- Free allocations vs. auction
- Regulatory certainty
- All sectors must be included
- Worldwide effort

Waxman-Markey Bill

- Cap and Trade
- Includes RES
- \$1 billion/year in CCS grants
- Allocations
- Offsets

Henry Waxman (CA)

Ed Markey (MA)

egnedD etemilD

- Growing scientific and public opinion that CO₂ emissions are contributing to climate change...
- Priority of Obama Administration ...
- U.S. responsible for ¹/₄ of global CO₂ emissions...
- Electricity sector responsible for ¹/₃ of U.S.
 CO₂ emissions...
- General agreement that technology solutions are needed....

Climate Change

- Basin Electric supports reasonable climate change legislation
- We want to be a part of the solution, not part of the problem

Dakota Gasification Company

DGC is unique

- Only commercial coal gasification facility producing synthetic natural gas
- Liquids production
- Fertilizer production
- CO₂ capture and sequestering

Dakota Gasification Company (DGC) World's Largest Carbon Sequestration Project

Compressors

Weyburn, Saskatchewan
16 Million Tons Sequestered To Date

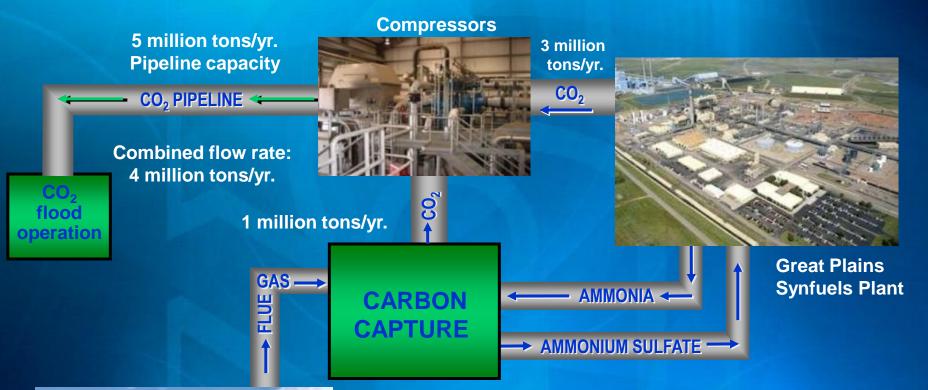
5 million tons/year Pipeline capacity CO₂ PIPELINE

Current flow rate:

<image>

EnCana and Apache

eruiqeD nodreD ipefor9 noiferitenomed


Objectives

- demonstration of carbon capture leading to commercialization
- no net increase in emissions
- reduce CO₂ emissions 90% removal from slipstream
- provide economic analysis and performance of technology
- carbon restraint environment pathway for coal

Carbon Capture - AVS

- Demonstration/Commercialization Project
- AVS –two 450 MW units, lignite, dry scrubbers/baghouse
- 120 MW slipstream
- 57 MMSCF or 3,000 tons/daily
- CO₂ used in Enhanced Oil Recovery (EOR)
- Partner with PCOR phase III – EERC – University of North Dakota

Carbon Capture Optimization Project

Antelope Valley Station (AVS)

Advantages to AVS Post Combustion Demonstration Plant

- DGC facility has established CO₂ transport technology within Williston Basin
- DGC facility produces ammonia which can be used CO₂ removal process
- DGC facility has ammonium sulfate production capacity to handle sulfur resulting from additional SO₂ removal for CCS

CO₂ Pipeline

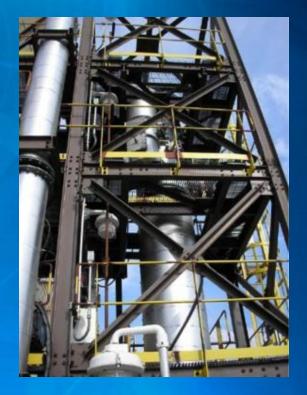
- 205 miles
- 14" and 12" carbon steel pipe
- Strategically routed through Williston Basin oil fields

Powerspan Corporation

- Founded in 1994, privately held
- Develop and commercialize emission control systems
- ECO Electro-Catalytic Oxidation, begin in 1998
- ECO₂ Carbon Capture Technology only patent issued to date on CO₂ capture using ammonia
- Exclusive right to license the patent
- ECO₂ pilot plant Burger Plant, Ohio

ECO® Capability

 Commercially available, ammonia-based, multi-pollutant control for SO₂, SO₃, NOx, Hg and other metals, PM2.5, HAPs (i.e. HCI, HF)


Emission levels like natural gas plants

–ECO has capability of near zero emissions; 1-2 ppm outlet SO₂/NO_x; particulate matter < 0.005 lb/mmBtu – Equivalent or better than IGCC.

 No major waste streams – byproducts recycled

ECO2 Pilot

- Pilot scale tests of CO₂ removal
 - Integrated with ECO process at FirstEnergy's R.E. Burger Plant
 - Designed for 90% removal
 - ~20 ton/day CO2 / ~ 1 MW equivalent
- Evaluate process performance and economics for scale-up
- Demonstrate ammonia vapor control
- Verify process performance and control under varying conditions

Feasibility Study

- 3 month study March-May 2008
- Station power requirements

 electrical power, steam and compression
- No fatal flaws identified
- Cost \$300 million (+/- 30 percent)
- Cost to capture and compress \$45-50/ton
- Project Schedule FEED, 6 months; detailed engineering, procurement and construction - 36 months

FEED Study

Tentative start – August 2009

- Cost analysis (+/- 15 %)
- Balance of plant
- Design specifications
- Performance specification
- Optimization studies
- Refined schedule
- Cost \$5 million

eruiqeD nodreD ipefor9 noiferitenomed

Challenges

- Great Risk first to commercialize the newest technology
- Station Power for CCS
- <10 ppm SO₂ inlet required
- Cooling water for CO₂ absorption
- Integration with existing infrastructure
- Steam for CO₂ stripping
- Permit Modification
- Cost \$300 million +

Carbon Capture & Storage

Opportunities

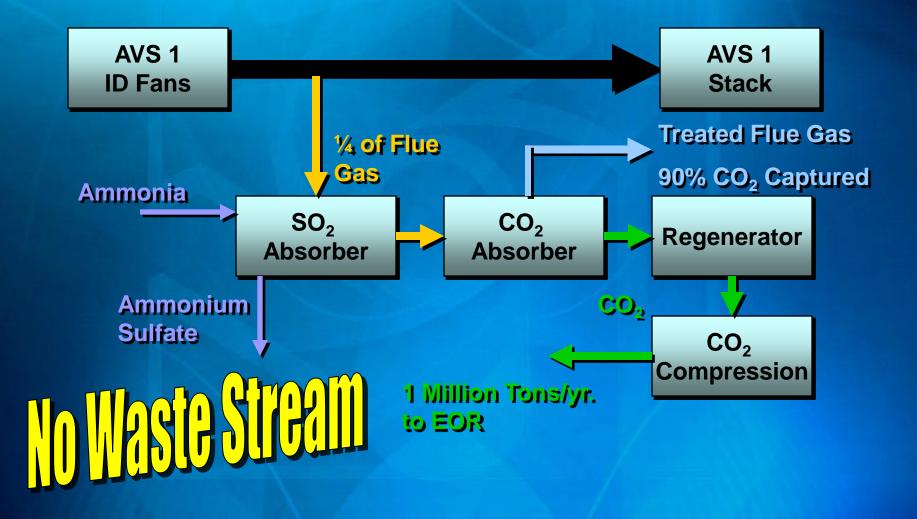
- EOR is a driver for our AVS CCS project
- EOR is a bridge for understanding future sequestration in saline aquifers & unrecoverable coal seams
- Our industry needs Carbon Capture Technology demonstrated
- PCOR phase III will advance CCS knowledge (MMV)

inel^q noiferitanomed coimonooE

\$/ton

Capture Cost Transport Cost Total Cost - CO₂ Revenue Net Gain (Loss) (\$35) (\$ (\$10) (\$ (\$45) (\$ \$35 \$ (\$10) (\$

(\$45) (\$15) (\$60) \$20 (\$40)


CO2 Capture - AVS

Dakota Gasification Company - Experience - Infrastructure Pipeline capacity Ammonia production Ammonium sulfate production Close proximity to AVS - Market for CO,

Milesiones

- Request For Proposal June 1, 2007
- Sent to 10 companies, RFP placed on website
- Proposals Due September 4, 2007
- Technology Selection February 2008
- Feasibility Study Spring 2008
- Pilot Study Review
- Front End Engineering Design Study

Powerspan Process

CO₂ Capture

Amine

- Purchase from technology provider
- Reclaimer waste produced during amine clean up

Ammonia

- Supplied from DGC
- Purge to ammonium sulfate stream
- No waste produced

Electrical Power Impact

Decrease in Net Generation

- Steam Extraction
- Electricity to Capture
- Electricity to Compress to 2700 psig
- Water Consumption
- Waste Stream

Summary

- AVS CO₂ Capture In Development
- Amine and Ammonia CO₂ Capture
- Plant Impacts of Post Combustion Capture
 - Space
 - Flue Gas
 - Steam/Condensate
 - Cooling
 - Waste Streams
 - New Chemicals
 - Net Electrical Generation

Questions?