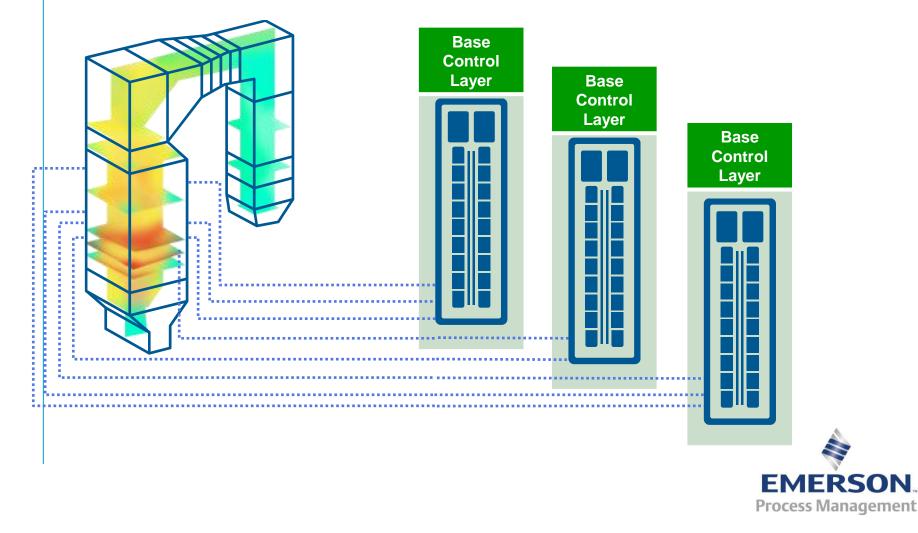
Low NOx Applications

Jeff Williams

Power & Water Solutions

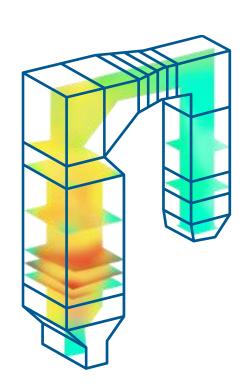
Emerson Confidential


Agenda

- Overview
- SmartProcess Combustion Optimization
- Embedded Model-based Combustion Optimization
- Implementation Projects, Customer Sites
- Case Study Results

SILO – Optimization Layers

Optimization Layers – SILO


SILO – Optimization Tasks

Measured Disturbances

Boiler Load Coal Mills Configuration

Control Signals

Secondary Air Dampers OFA, SOFA, COFA O_2 Coal Feeders

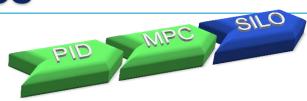
Non-Measured Disturbances

Coal Calorific Value Biomass Co-Firing Quality of Mills Grinding

Control Signals

RH Steam Temperature SH Steam Temperature CO, NO_X , O_2 balance

SILO vs. Other Approaches


MPC – model predictive control

- Advantages
 - Dynamic MIMO model
- Disadvantages
 - Insufficient adaptation to non-stationary characteristics
 - High economic cost related with model creation process
 - Modification of production schedule due to identification experiments
 - Insufficient approximation of not typical process states (i.e. different fuel parameters, unusual coal mills configuration)

SILO vs. Other Approaches

SILO

- Advantages
 - Knowledge gathering in on-line and off-line modes
 - Efficient adaptation mechanism inspired by operation of immune system Feature : SILO II is able to adapt to different operating points and it is able to follow changes of the process characteristics. Thus the SILO performance is high in wide range of process operating points.
 - Extended run time of SILO system

Feature : The customer saves money on re-tuning the optimization software and has more flexibility in plant revisions.

- No need for model creation process:
- No identification experiments
- No inefficient process operation
- No need to change the production schedule of the plant

Feature : There are no off dispatch times needed for identification experiments.

SILO vs. Other Approaches

Advantages

Easy modification of optimization task structure

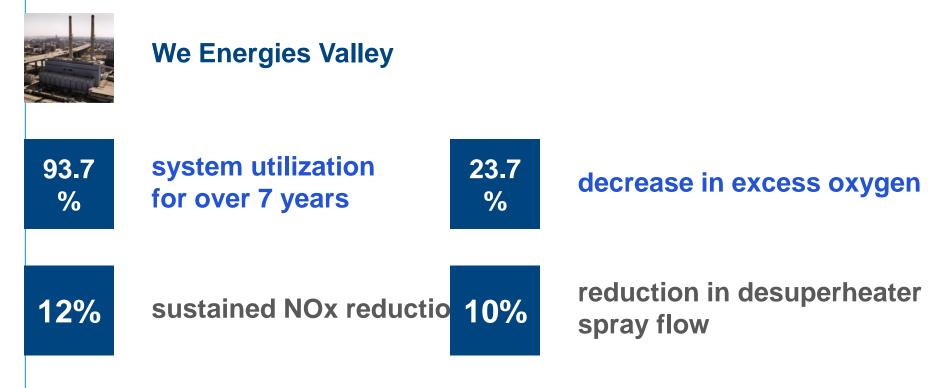
Feature : The customer does not have to pay for changing the structure of the optimization and has more flexibility plant revisions

Approximation of static process characteristic is more accurate

Feature : SILO uses higher number of signals and more narrow ranges of values of these signals to define the process sub-space in which the linear process approximation is automatically performed

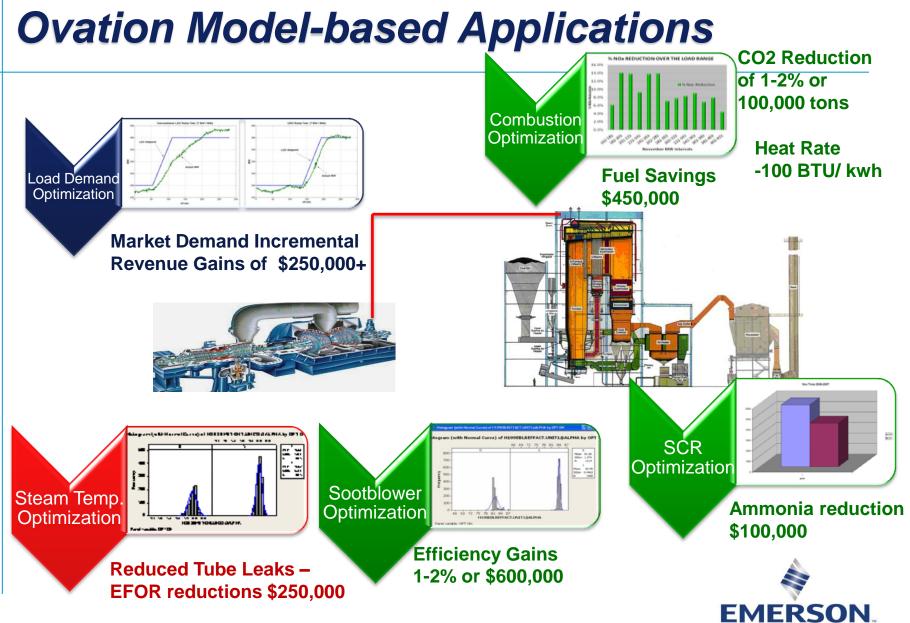
Optional utilization of expert knowledge

Feature : Some expert knowledge about the process can be implemented even if this knowledge is fuzzy and not precise


Disadvantages

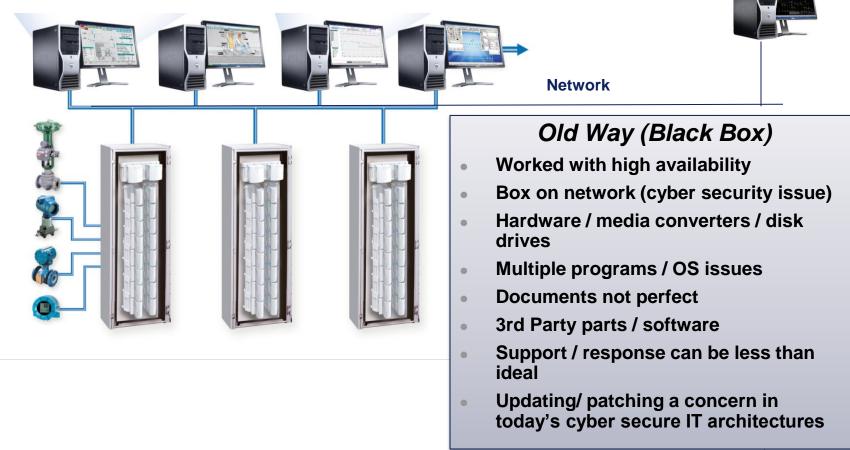
 MPC controllers can be applied for processes where the process dynamic is crucial. Execution and optimization times are typically in the seconds time vs 5-15 seconds for higher level algorithms

Summary – Case Study



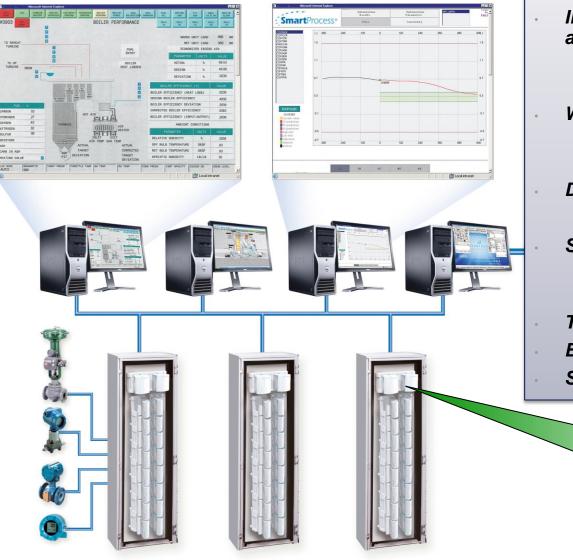
Ovation Model-based Applications

Emerson Confidential

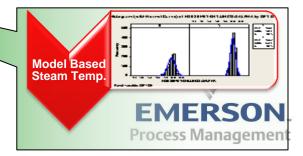


EMERSON. Process Management

VPN access


Old Way - Control Optimization

Black Box



New Way – Embedded Model Based Control

Ovation Model-Based Approach

- Integrated-works with highest availability
 - Embedded in Ovation Red Controller (Redundant)
 - WYSIWYG
 - Control Builder advanced edit functions
- Documentation
 - Algorithms in APC Manual
 - System Documentation
 - Easy to track sheets / revisions to logic
- Training flexibility
- **Emerson Solution** by Emerson
- SureService 24/7 support by Emerson

Ovation Model-based Applications – Embedded DMC

- What is DMC?
 - DMC is dynamic matrix control
 - DMC belongs to the MPC (model predictive control) class of algorithms
 - Ovation APC algorithm (Embedded, no 3rd party box)
- How is DMC used?
 - A control model is formulated using Control Variables (CVs), Manipulated Variables (MVs), and Disturbance Variables (DVs).
 - A model is created from step-response testing
 - Based on the model, the CVs prediction is computed using a horizon calculation function

Ovation Model-based Applications – Embedded DMC

- Advanced Process Control (APC) Toolkit DMC Algorithm
 - Model Based
 - Output is Step Response
 - NO PIDs
 - Proactive
 - Used for controlling error (PV vs. SP)
 - Disturbance Immunity

Ovation Embedded Combustion Optimization

Emerson Confidential

Ovation Model-based Applications – Combustion Optimization (OPT)

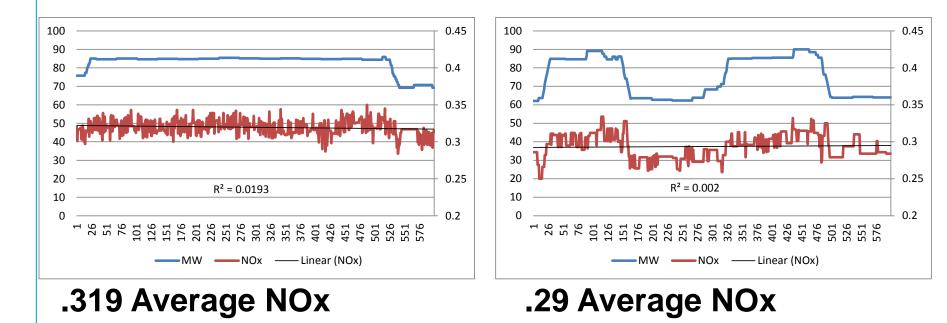
- Status –Beta Tests complete
- Lowering NOx while controlling CO
- Balanced O2
- Proper Combustion



Old vs New

 Combustion optimization

Ovation Modelbased combustion

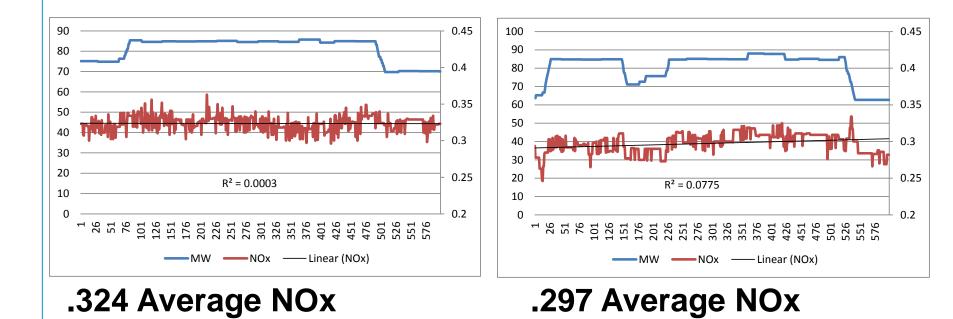


9% Improvement

Old vs New 3

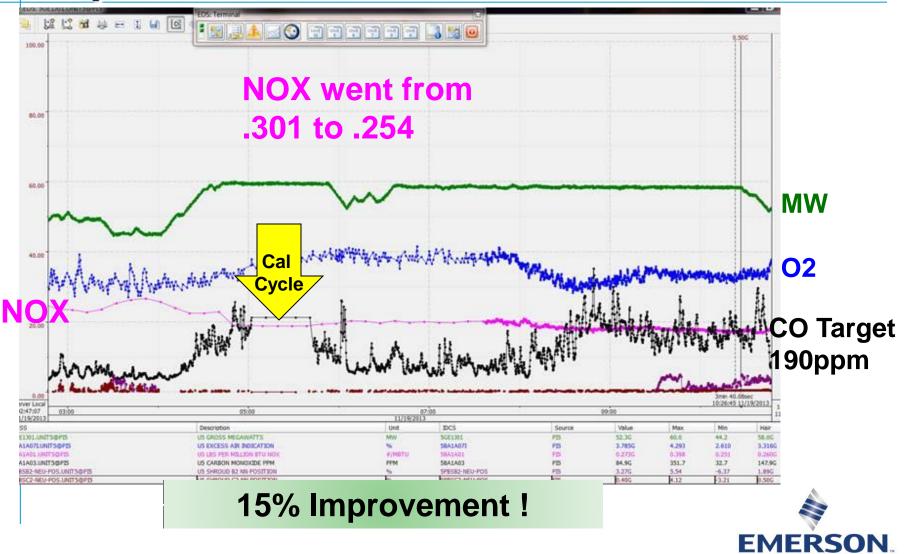
 Combustion optimization

Ovation Modelbased combustion

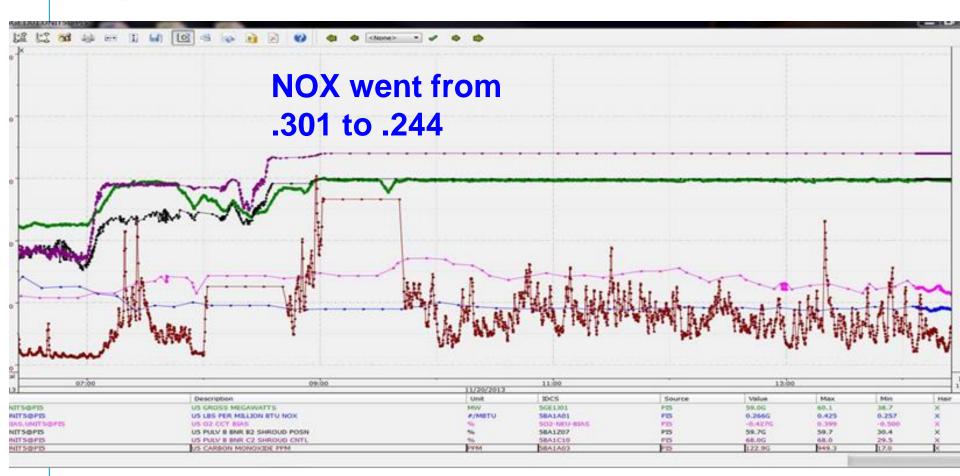


9% Improvement

Old vs New 4


 Combustion optimization

Ovation Modelbased combustion

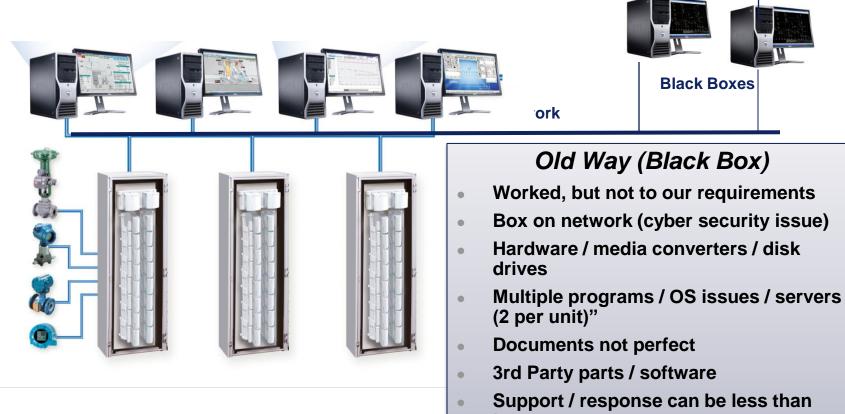

8% Improvement

Implementation Results

Process Management

Implementation 2

Pleasant Prairie Power Plant (P4)


- 2x 617 MW units
- 1190 Net MW
 - Unit 1 is a 1980 Riley Turbo-fire boiler and GE turbine
 - Unit 2 is a 1985 Riley
 Turbo-fire boiler and GE turbine
 - Power Magazine Coal Fired Top Plant in 2007

VPN access

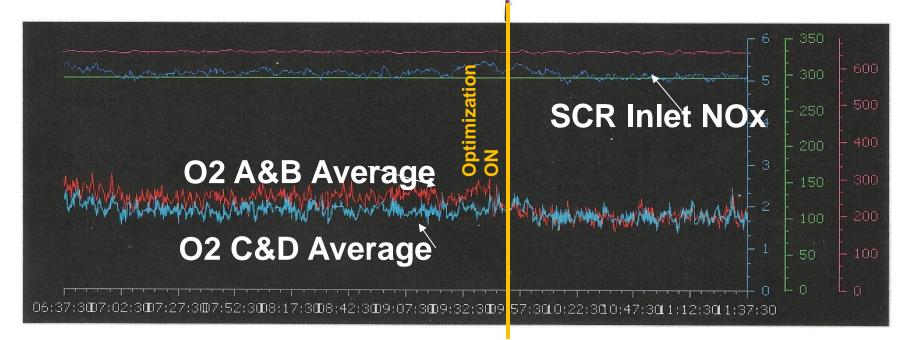
Old Way – NOx Optimization

- idealUpdating/ patching a concern in
 - today's cyber secure IT architectures

Problems With 3rd Party System

- No in house expertise or ability to make changes
- System was controlled/configured remotely
- No buy in by control operators
 - Lost confidence in the system
 - System turned off most of the time!

Operator View

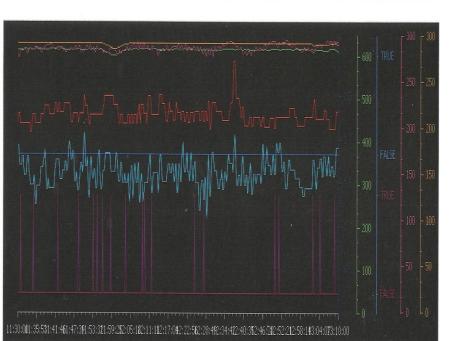

	STEAM FLOW 3495 KLBH	THROTTLE PRESS T 1793 PSIG	OTAL AIR FLOW	OXYGEN 3.51 %	TOTAL FUEL FLOW 63.00 %	/ FURN PRESS -0.56 INWC	DRUM LEVEL 0.25 INWC	
BC	DILER	1	NOX CALIBRAT	ON MB-0				
			•	•				
TROL PROGRAM				1				
NOX SETPOINT	_	PROGRAM NUMBE	270.00 PPM					
OPTIMIZATION		NOX SEIFOINI	270.00 PPM		MAX 02 BIAS	UP 1.500 %	MAX 02 BIAS UP	
		MINIMUM NOX	209.80 PPM		MAX O2 BIAS	DOWN -0.500 %	MAX 02 BIAS DOW	VN
		NOX RATE	211.07 PPM		MIN 02 SETP	OINT 1.500 %	MIN 02 SETPOINT	r 🛛
		OPTIMIZATION	275.00 PPM		CO BLOCK LI	MIT 50.000 PP	M CO BLOCK	
		MBA-OPT 02 BIA			MAX SEC AIR	BIAS 10.000 %	MAX SEC AIR BIA	AS
		MBA-OPT SAD BI			MIN SEC AIR	BIAS -10.00 %	MIN SEC AIR BIA	AS
		EXCESS AIR CO (INST)	3.511 % 3.000 PPM					
		CO (FILTER)	5.679 PPM					
	FEED SH 8	RH ID PA	/FD FUEL			MILL MILL	MILL MBA 0	7/31/15
		TROL FAN FAN CONTROL CON	AN	1 CONTROL CON	2 3 TROL CONTROL (4 5 CONTROL CONTROL	SUMMARY OPTIMIZER 12	2:32:10

EMERSON. Process Management

Results to Date Closed-loop Test at High Load

Start Time : 04/16/2015 06:37:30 End Time : 04/16/2015 11:37:30

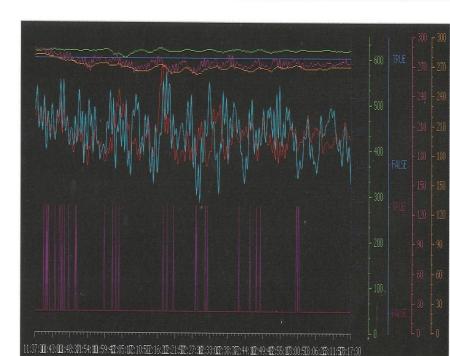
	G	Point Name	Historian	Description	End Value	Units	S	Low S	High
1		(A) 20BA0040.UNIT2@PPPP2	Auto Historian	FLUE GAS O2 A&B AVG	1.612	%		0	6
2		(A) 20BA0041.UNIT2@PPPP2	Auto Historian	FLUE GAS O2 C&D AVG	1.605	%		0	6
3		(A) 2MBA_DMCNOX_SP.UNIT2@PPP	Auto Historian	@ Ovation Control Builder @	295.000			-1	350
4		(A) U2-SCRIN-NOX-AVG.UNIT2@PPP	Auto Historian	@ Ovation Control Builder @	298.909			-1	350
5		(A) 20MPJ004.UNIT2@PPPP2	Auto Historian	GENERATOR 2 GROSS MW	641	MW		-1	680



Results #3 O2 balance

Start Time : 06/04/2015 11:30:00 End Time : 06/04/2015 13:10:00

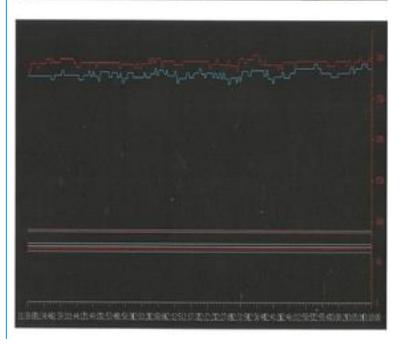
Before


	G	Point Name	Historian	Processing	Description	End Value	Units	S	Low Scale	High Sc
1	V	(A) 20BA0040.UNIT2@PPPP2	Auto Historian	Actual	FLUE GAS O2 A&B AVG	2.330	%	V	1	3,397
2	V	(A) 20BA0041.UNIT2@PPPP2	Auto Historian	Actual	FLUE GAS O2 C&D AVG	1.904	%	V		87.97 1
3	V	(A) 20MPJ004.UNIT2@PPPP2	Auto Historian	Actual	GENERATOR 2 GROSS MW	612	MW	V	0	650
4	V	(A) 2MBA_OPT_ON.UNIT2@PPPP2	Auto Historian	Actual	@ Ovation Control Builder @	FALSE 0		V	FALSE	TRUE
5	V	(A) U2-SCRIN-NOX-AVG.UNIT2@PPPP2	Auto Historian	Actual	@ Ovation Control Builder @	293.238		V		300
6	V	(A) 2MBA_DMCNOX_SP.UNIT2@PPPP2	Auto Historian	Actual	@ Ovation Control Builder @	290.302		V	-1	300
7	V	(A) U2_FLAME_LOWUNTT2@P2PP2	Auto Historian	kia	19 Ovation Control Builden D	FALSE 0		V	FALSE	TRUE

Start Time : 06/10/2015 11:37:30 End Time : 06/10/2015 13:17:30

After

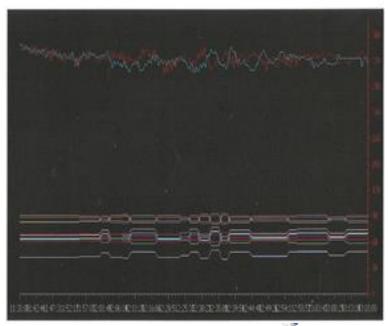
	G	Point Name	Historian	Description	End Value	Units	S	Low Scale	High S
1	V	(A) 20BA0040.UNIT2@PPPP2	Auto Historian	FLUE GAS 02 A&B AVG	1.713	%	V		284
2	V	(A) 20BA0041.UNIT2@PPPP2	Auto Historian	FLUE GAS O2 C&D AVG	1.305	%	V		2.843
3	V	(A) 20MPJ004.UNIT2@PPPP2	Auto Historian	GENERATOR 2 GROSS MW	621	MW	V	(0 650
4	V	(A) 2MBA_OPT_ON.UNIT2@PPPP2	Auto Historian	@ Ovation Control Builder @	TRUE 1			FALSE	TRUE
5	V	(A) U2-SCRIN-NOX-AVG.UNIT2@PPPP2	Auto Historian	Ovation Control Builder	274.596		V	1	300
6	V	(A) 2MBA_DMCNOX_SP.UNIT2@PPPP2	Auto Historian	@ Ovation Control Builder @	268.853		V	-1	L 300
7	V	en estatutatore	Alter Historian	20 Alten Corife Buller et	FALSE 0		V	Filst	RE



Results #3 SCR inlet NOx

Start Time : 16/04/2015 13:30:00 End Time : 16/04/2015 13:30:00

Before


	6	Point Name	Hitte	Proveing	Pestilar	Est We late	f inside
2	v	Automatica (1997)		ALC .	0 9000	12.1	-
2	v	A DECKER SHIT		236	113830	6.4	
2	¥.					8.8	2
4	v	(production)	An Amor	9.54	WISEOE	8.8 1	2
2	¥	ACCOMPANY:	kt) febrar	ktal.	579500	16.8 1	2
-	v	A TROWNED MAL		Achie :	1919000	8.8	

Start Time : 16/10/2015 11:30:00 End Time : 06/10/2015 13:30:00

After

1	Point Name	Hate	Description	Sto Value (Units	S Low Schipt
лF	K. HACKLINE (1999)	Luncia.	19-5000	89	
3.0	A THORNAL PROPERTY		19.50 (70	2.5	5 10
2 6	and the second second			62	
1	gaptalisticas)		NEEDE	6.2	
1.	NUMBER OF STREET	Actibie	195000	102 N	
1.	ALCONCHEDUCTION (ALHER	193000	aty N	

