Important Features to Consider for Making HRSG's Robust in a Cyclic Service Environment

Introduction

- Over fifteen years of cyclic design at N/E
- We have learned much over this time frame
- Possible to design HRSG's for high cyclic operation
- There are two areas of focus:
 - 1. Mechanical details
 - 2. Operation

Introduction

- Important Mechanical Features:
 - 1. Coil Flexibilities
 - 2. Piping Layouts
 - 3. Component thicknesses
 - 4. Tube to header attachments
 - 5. Desuperheaters
 - 6. Condensate management systems
 - 7. Feedwater recirculation systems
 - 8. Auxiliary equipment (stack dampers, steam sparging, etc)
- Focus on two of these features: Coil Flexibilities and Piping Layouts
- All are important **E**NOOTER/ERIKSEN

LCF versus HCF

- LCF Low Cycle Fatigue
 - 1. Failures occurring in less than 1000 cycles
 - 2. Stresses resulting in high inelastic strains
 - 3. Normal Causes:
 - Restrained thermal growth
 - Water quenching
 - 4. Important to minimize or eliminate all LCF
- HCF High Cycle Fatigue
 - 1. Normal fatigue caused by operation
 - 2. Two main causes:
 - Through thickness temp. gradients

Pressure stresses
 NENOOTER/ERIKSEN

Importance of Coil Flexibilities

- Essential to eliminating low cycle fatigue
- Main concern:
 - Longitudinal tube to tube temperature differences

Tube to tube temperature differences

SH/RH each row different temperatureDifferent ways to absorb movements

1. Internal coil flexibilities

2. Allow parts to move freely

•Support SH & RH from spring supports

•Stress orders of magnitude lower

TER/ERIKSEN

<u>General Rule</u>: Allowing parts to move freely always better than relying on internal coil flexibilities

Spring Support of Header

Fixed Header

Floating Header of Same Coil

Example poor coil arrangement

- Fixed upper headers
- Tubes not allowed to move
- Relies on flexing of stiff link pipe, header and manifold rotation.
- High stresses at link plate to manifold

Other examples of good coil configurations

└──High coil flexibility

Other examples of poor coil configurations

Piping Layouts

- Often over looked
- Start up transients important
- Coils will heat up before piping
- Routing piping top to bottom not desirable
- Additional flexibility required if routed top to bottom

Piping Layouts

- Some times not possible to prevent
- Must provide sufficient piping flexibilities
- If done, do not attach to headers with springs

Summary

- Cycling can be accounted for in designs
- Long equipment life result of good design and operation
- Important to have good coil and piping flexibilities
- Have focused only on two of several features
- Other features are important and should be considered
 Component thicknesses
 Desuperheaters
 Feedwater Recirculation
 Aux equipment

Summary

- Mechanical Features less than half the story
- How you operate most important
 - 1. Understanding most damaging cycles
 - 2. Minimizing or eliminating water quenching
 - 3. Planning for when things go wrong
- Paper: "Cyclic Service Features for Heat Recovery Steam Generators" – by Lewis R. Douglas and Samuel Perez.

